matplotlib/core.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
use std::{
collections::HashMap,
fs,
io::{ self, Write },
ops::Range,
path::{ Path, PathBuf },
process,
rc::Rc,
};
use rand::distributions::{ Alphanumeric, DistString };
use serde_json as json;
use thiserror::Error;
use crate::commands::Axis2;
#[derive(Debug, Error)]
pub enum MplError {
#[error("IO error: {0}")]
IOError(#[from] io::Error),
#[error("serialization error: {0}")]
JsonError(#[from] json::Error),
#[error("script error:\nstdout:\n{0}\nstderr:\n{1}")]
PyError(String, String),
}
pub type MplResult<T> = Result<T, MplError>;
/// Default prelude to a Matplotlib script.
///
/// ```python
/// import datetime
/// import io
/// import json
/// import os
/// import random
/// import sys
/// import matplotlib
/// matplotlib.use("QtAgg")
/// import matplotlib.path as mpath
/// import matplotlib.patches as mpatches
/// import matplotlib.pyplot as plt
/// import matplotlib.cm as mcm
/// import matplotlib.colors as mcolors
/// import matplotlib.collections as mcollections
/// import matplotlib.ticker as mticker
/// import matplotlib.image as mimage
/// from mpl_toolkits.mplot3d import axes3d
/// import numpy as np
/// ```
pub const PRELUDE: &str
= "\
import datetime
import io
import json
import os
import random
import sys
import matplotlib
matplotlib.use(\"QtAgg\")
import matplotlib.path as mpath
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import matplotlib.cm as mcm
import matplotlib.colors as mcolors
import matplotlib.collections as mcollections
import matplotlib.ticker as mticker
import matplotlib.image as mimage
from mpl_toolkits.mplot3d import axes3d
import numpy as np
";
/// Default initializer for plotting objects, defaulting to a single figure and
/// axis frame.
///
/// ```python
/// fig, ax = plt.subplots()
/// ```
pub const INIT: &str
= "\
fig, ax = plt.subplots()
";
/// An executable element in a Matplotlib script.
pub trait Matplotlib: std::fmt::Debug {
/// Return `true` if `self` should be considered as a prelude item, which
/// are execute in the order seen but before any non-prelude items.
fn is_prelude(&self) -> bool;
/// Optionally encode some data as JSON, to be made available at `self`'s
/// call site in the matplotlib script.
fn data(&self) -> Option<json::Value>;
/// Write `self` as Python. The (default) local environment will hold the
/// following variables:
///
/// - `data`: If [`self.data`][Matplotlib::data] returns `Some`, that data
/// will be available under this name.
/// - `fig` and `ax`: The current figure of type `matplotlib.pyplot.Figure`
/// and the current set of axes, of type `matplotlib.axes.Axes`.
fn py_cmd(&self) -> String;
}
/// Convert a Rust value to a Python source code string.
pub trait AsPy {
fn as_py(&self) -> String;
}
impl AsPy for bool {
fn as_py(&self) -> String { if *self { "True" } else { "False" }.into() }
}
impl AsPy for i32 {
fn as_py(&self) -> String { self.to_string() }
}
impl AsPy for f64 {
fn as_py(&self) -> String { self.to_string() }
}
impl AsPy for String {
fn as_py(&self) -> String { format!("\"{self}\"") }
}
impl AsPy for &str {
fn as_py(&self) -> String { format!("\"{self}\"") }
}
/// A primitive Python value or variable to be used in a keyword argument.
#[derive(Clone, Debug, PartialEq)]
pub enum PyValue {
/// A `bool`.
Bool(bool),
/// An `int`.
Int(i32),
/// A `float`.
Float(f64),
/// A `str`.
Str(String),
/// A `list[...]`.
List(Vec<PyValue>),
/// A `dict[str, ...]`.
Dict(HashMap<String, PyValue>),
/// An arbitrary variable name.
///
/// **Note**: This variant is *not* validated as a Python identifier.
Var(String),
/// Python's `None` value.
None
}
impl From<bool> for PyValue {
fn from(b: bool) -> Self { Self::Bool(b) }
}
impl From<i32> for PyValue {
fn from(i: i32) -> Self { Self::Int(i) }
}
impl From<f64> for PyValue {
fn from(f: f64) -> Self { Self::Float(f) }
}
impl From<String> for PyValue {
fn from(s: String) -> Self { Self::Str(s) }
}
impl From<&str> for PyValue {
fn from(s: &str) -> Self { Self::Str(s.into()) }
}
impl<T> From<&T> for PyValue
where T: Clone + Into<PyValue>
{
fn from(x: &T) -> Self { x.clone().into() }
}
impl From<Vec<PyValue>> for PyValue {
fn from(l: Vec<PyValue>) -> Self { Self::List(l) }
}
impl From<HashMap<String, PyValue>> for PyValue {
fn from(d: HashMap<String, PyValue>) -> Self { Self::Dict(d) }
}
impl<T: Into<PyValue>> FromIterator<T> for PyValue {
fn from_iter<I>(iter: I) -> Self
where I: IntoIterator<Item = T>
{
Self::list(iter)
}
}
impl<S: Into<String>, T: Into<PyValue>> FromIterator<(S, T)> for PyValue {
fn from_iter<I>(iter: I) -> Self
where I: IntoIterator<Item = (S, T)>
{
Self::dict(iter)
}
}
impl PyValue {
/// Create a `List` from an iterator.
pub fn list<I, T>(items: I) -> Self
where
I: IntoIterator<Item = T>,
T: Into<PyValue>,
{
Self::List(items.into_iter().map(|item| item.into()).collect())
}
/// Create a `Dict` from an iterator.
pub fn dict<I, S, T>(items: I) -> Self
where
I: IntoIterator<Item = (S, T)>,
S: Into<String>,
T: Into<PyValue>,
{
Self::Dict(
items.into_iter().map(|(s, v)| (s.into(), v.into())).collect())
}
}
impl AsPy for PyValue {
fn as_py(&self) -> String {
match self {
Self::Bool(b) => if *b { "True".into() } else { "False".into() },
Self::Int(i) => format!("{i}"),
Self::Float(f) => format!("{f}"),
Self::Str(s) => format!("\"{s}\""),
Self::List(l) => {
let n = l.len();
let mut out = String::from("[");
for (k, v) in l.iter().enumerate() {
out.push_str(&v.as_py());
if k < n - 1 { out.push_str(", "); }
}
out.push(']');
out
},
Self::Dict(d) => {
let n = d.len();
let mut out = String::from("{");
for (j, (k, v)) in d.iter().enumerate() {
out.push_str(&format!("\"{}\": {}", k, v.as_py()));
if j < n - 1 { out.push_str(", "); }
}
out.push('}');
out
},
Self::Var(v) => v.clone(),
Self::None => "None".into(),
}
}
}
/// An optional keyword argument.
#[derive(Clone, Debug, PartialEq)]
pub struct Opt(pub String, pub PyValue);
impl<T: Into<PyValue>> From<(&str, T)> for Opt {
fn from(kv: (&str, T)) -> Self { Self(kv.0.into(), kv.1.into()) }
}
impl<T: Into<PyValue>> From<(String, T)> for Opt {
fn from(kv: (String, T)) -> Self { Self(kv.0, kv.1.into()) }
}
impl Opt {
/// Create a new `Opt`.
pub fn new<T>(key: &str, val: T) -> Self
where T: Into<PyValue>
{
Self(key.into(), val.into())
}
}
/// Create a new [`Opt`].
pub fn opt<T>(key: &str, val: T) -> Opt
where T: Into<PyValue>
{
Opt::new(key, val)
}
impl AsPy for Opt {
fn as_py(&self) -> String { format!("{}={}", self.0, self.1.as_py()) }
}
impl AsPy for Vec<Opt> {
fn as_py(&self) -> String {
let n = self.len();
let mut out = String::new();
for (k, opt) in self.iter().enumerate() {
out.push_str(&opt.as_py());
if k < n - 1 { out.push_str(", "); }
}
out
}
}
/// Extends [`Matplotlib`] to take optional keyword arguments.
pub trait MatplotlibOpts: Matplotlib {
/// Apply a single keyword argument.
fn kwarg<T: Into<PyValue>>(&mut self, key: &str, val: T) -> &mut Self;
/// Apply a single keyword argument with full ownership of `self`.
fn o<T: Into<PyValue>>(mut self, key: &str, val: T) -> Self
where Self: Sized
{
self.kwarg(key, val);
self
}
/// Apply a series of keyword arguments with full ownership of `self`.
fn oo<I>(mut self, opts: I) -> Self
where
I: IntoIterator<Item = Opt>,
Self: Sized,
{
opts.into_iter().for_each(|Opt(key, val)| { self.kwarg(&key, val); });
self
}
}
fn get_temp_fname() -> PathBuf {
std::env::temp_dir()
.join(Alphanumeric.sample_string(&mut rand::thread_rng(), 15))
}
#[derive(Debug)]
struct TempFile(PathBuf, Option<fs::File>);
impl TempFile {
fn new<P: AsRef<Path>>(path: P) -> io::Result<Self> {
let path = path.as_ref().to_path_buf();
fs::OpenOptions::new()
.create(true)
.append(false)
.truncate(true)
.write(true)
.open(&path)
.map(|file| Self(path, Some(file)))
}
}
impl Write for TempFile {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
if let Some(file) = self.1.as_mut() {
file.write(buf)
} else {
Ok(0)
}
}
fn flush(&mut self) -> io::Result<()> {
if let Some(file) = self.1.as_mut() {
file.flush()
} else {
Ok(())
}
}
}
impl Drop for TempFile {
fn drop(&mut self) {
drop(self.1.take());
fs::remove_file(&self.0).ok();
}
}
/// Main script builder type.
///
/// Plotting scripts are built by combining base `Mpl`s with either individual
/// commands represented by types implementing [`Matplotlib`] (via
/// [`then`][Self::then]) or other `Mpl`s (via [`concat`][Self::concat]). Both
/// operations are overloaded onto the `&` operator.
///
/// When a script is ready to be run, [`Mpl::run`] appends the appropriate IO
/// commands to the end of the file before writing to the OS's default temp
/// directory (e.g. `/tmp` on Linux) and calling the system's default `python3`
/// executable. Files in the temp directory are cleaned up afterwards. `Mpl` can
/// also interact with the [`Run`] objects through both the `&` and `|`
/// operators, where instead of producing a `Result` like `run`, a `panic` is
/// raised on an error. `&` produces a final `Mpl` to be used in later
/// operations, while `|` returns `()`.
///
/// ```ignore
/// use std::f64::consts::TAU;
/// use mpl::{ Mpl, Run, MatplotlibOpts, commands as c };
///
/// let dx: f64 = TAU / 1000.0;
/// let x: Vec<f64> = (0..1000_u32).map(|k| f64::from(k) * dx).collect();
/// let y1: Vec<f64> = x.iter().copied().map(f64::sin).collect();
/// let y2: Vec<f64> = x.iter().copied().map(f64::cos).collect();
///
/// Mpl::default()
/// & c::plot(x.clone(), y1).o("marker", "o").o("color", "b")
/// & c::plot(x, y2).o("marker", "D").o("color", "r")
/// | Run::Show
/// ```
#[derive(Clone, Debug, Default)]
pub struct Mpl {
prelude: Vec<Rc<dyn Matplotlib + 'static>>,
commands: Vec<Rc<dyn Matplotlib + 'static>>,
}
// pub struct Mpl(Vec<Rc<dyn Matplotlib + 'static>>);
impl Mpl {
/// Create a new, empty plotting script.
///
/// The resulting plot will implicitly pull in
/// [`DefPrelude`][crate::commands::DefPrelude] and
/// [`DefInit`][crate::commands::DefInit] when [`run`][Self::run] (or a
/// synonym) is called if no other objects with [`Matplotlib::is_prelude`]`
/// == true` are added.
pub fn new() -> Self { Self::default() }
/// Create a new plotting script, initializing to a figure with a single set
/// of 3D axes (of type `mpl_toolkits.mplot3d.axes3d.Axes3D`).
///
/// This pulls in [`DefPrelude`][crate::commands::DefPrelude], but not
/// [`DefInit`][crate::commands::DefInit].
///
/// Options are passed to the construction of the `Axes3D` object.
pub fn new_3d<I>(opts: I) -> Self
where I: IntoIterator<Item = Opt>
{
let opts: Vec<Opt> = opts.into_iter().collect();
Self::default()
& crate::commands::DefPrelude
& crate::commands::prelude(
&format!("\
fig = plt.figure()\n\
ax = axes3d.Axes3D(fig, auto_add_to_figure=False{}{})\n\
fig.add_axes(ax)\n",
if opts.is_empty() { "" } else { ", " },
opts.as_py(),
)
)
}
/// Create a new plotting script, initializing to a figure with a regular
/// grid of plots. All `Axes` objects will be stored in a 2D Numpy array
/// under the local variable `AX`, and the script will be initially focused
/// on the upper-left corner of the array, i.e. `ax = AX[0, 0]`.
///
/// This pulls in [`DefPrelude`][crate::commands::DefPrelude], but not
/// [`DefInit`][crate::commands::DefInit].
///
/// Options are passed to the call to `pyplot.subplots`.
pub fn new_grid<I>(nrows: usize, ncols: usize, opts: I) -> Self
where I: IntoIterator<Item = Opt>
{
let opts: Vec<Opt> = opts.into_iter().collect();
Self::default()
& crate::commands::DefPrelude
& crate::commands::prelude(
&format!("\
fig, AX = plt.subplots(nrows={}, ncols={}{}{})\n\
AX = AX.reshape(({}, {}))\n\
ax = AX[0, 0]\n",
nrows,
ncols,
if opts.is_empty() { "" } else { ", " },
opts.as_py(),
nrows,
ncols,
)
)
}
/// Create a new plotting script, initializing a figure with Matplotlib's
/// `gridspec`. Keyword arguments are passed to
/// `pyplot.Figure.add_gridspec`, and each subplot's position in the
/// gridspec is specified using a [`GSPos`]. All `Axes` objects will be
/// stored in a 1D Numpy array under the local variable `AX`, and the script
/// will be initially focused to the subplot corresponding to the first
/// `GSPos` encountered, i.e. `ax = AX[0]`.
///
/// This pulls in [`DefPrelude`][crate::commands::DefPrelude`], but not
/// [`DefInit`][crate::commands::DefInit].
pub fn new_gridspec<I, P>(gridspec_kw: I, positions: P) -> Self
where
I: IntoIterator<Item = Opt>,
P: IntoIterator<Item = GSPos>,
{
let opts: Vec<Opt> = gridspec_kw.into_iter().collect();
let pos: Vec<GSPos> = positions.into_iter().collect();
let mut code = format!("\
fig = plt.figure()\n\
gs = fig.add_gridspec({})\n\
AX = np.array([\n",
opts.as_py(),
);
for GSPos { i, j, sharex: _, sharey: _ } in pos.iter() {
code.push_str(
&format!(" fig.add_subplot(gs[{}:{}, {}:{}]),\n",
i.start, i.end, j.start, j.end,
)
);
}
code.push_str("])\n");
let iter = pos.iter().enumerate();
for (k, GSPos { i: _, j: _, sharex, sharey }) in iter {
if let Some(x) = sharex {
code.push_str(&format!("AX[{}].sharex(AX[{}])\n", k, x));
}
if let Some(y) = sharey {
code.push_str(&format!("AX[{}].sharey(AX[{}])\n", k, y));
}
}
code.push_str("ax = AX[0]\n");
Self::default()
& crate::commands::DefPrelude
& crate::commands::prelude(&code)
}
/// Add a new command to `self`.
pub fn then<M: Matplotlib + 'static>(&mut self, item: M) -> &mut Self {
if item.is_prelude() {
self.prelude.push(Rc::new(item));
} else {
self.commands.push(Rc::new(item));
}
self
}
/// Combine `self` with `other`, moving all commands marked with
/// [`is_prelude`][Matplotlib::is_prelude]` == true` to the top (with those
/// from `self` before those from `other`) but maintaining command order
/// otherwise.
pub fn concat(&mut self, other: &Self) -> &mut Self {
self.prelude.append(&mut other.prelude.clone());
self.commands.append(&mut other.commands.clone());
self
}
fn collect_data(&self) -> (json::Value, Vec<bool>) {
let mut has_data =
vec![false; self.prelude.len() + self.commands.len()];
let data: Vec<json::Value> =
self.prelude.iter()
.chain(self.commands.iter())
.zip(has_data.iter_mut())
.flat_map(|(item, item_has_data)| {
let maybe_data = item.data();
*item_has_data = maybe_data.is_some();
maybe_data
})
.collect();
(json::Value::Array(data), has_data)
}
fn build_script<P>(&self, datafile: P, has_data: &[bool]) -> String
where P: AsRef<Path>
{
let mut script = String::new();
if self.prelude.is_empty() {
script.push_str(PRELUDE);
script.push_str(INIT);
} else {
for item in self.prelude.iter() {
script.push_str(&item.py_cmd());
script.push('\n');
}
}
script.push_str(
&format!("\
datafile = open(\"{}\", \"r\")\n\
alldata = json.loads(datafile.read())\n\
datafile.close()\n",
datafile.as_ref().display(),
)
);
let mut data_count: usize = 0;
let iter =
self.prelude.iter()
.chain(self.commands.iter())
.zip(has_data);
for (item, has_data) in iter {
if *has_data {
script.push_str(
&format!("data = alldata[{}]\n", data_count));
data_count += 1;
}
script.push_str(&item.py_cmd());
script.push('\n');
}
script
}
/// Build a Python script, but do not run it.
pub fn code(&self, mode: Run) -> String {
let mut tmp_json = get_temp_fname();
tmp_json.set_extension("json");
let (_, has_data) = self.collect_data();
let mut script = self.build_script(&tmp_json, &has_data);
match mode {
Run::Show => {
script.push_str("\nplt.show()");
},
Run::Save(outfile) => {
script.push_str(
&format!("\nfig.savefig(\"{}\")", outfile.display()));
}
Run::SaveShow(outfile) => {
script.push_str(
&format!("\nfig.savefig(\"{}\")", outfile.display()));
script.push_str("\nplt.show()");
},
Run::Debug => { },
Run::Build => { },
}
script
}
/// Build and run a Python script script in a [`Run`] mode.
pub fn run(&self, mode: Run) -> MplResult<()> {
let tmp = get_temp_fname();
let mut tmp_json = tmp.clone();
tmp_json.set_extension("json");
let mut tmp_py = tmp.clone();
tmp_py.set_extension("py");
let (data, has_data) = self.collect_data();
let mut script = self.build_script(&tmp_json, &has_data);
match mode {
Run::Show => {
script.push_str("\nplt.show()");
},
Run::Save(outfile) => {
script.push_str(
&format!("\nfig.savefig(\"{}\")", outfile.display()));
},
Run::SaveShow(outfile) => {
script.push_str(
&format!("\nfig.savefig(\"{}\")", outfile.display()));
script.push_str("\nplt.show()");
},
Run::Debug => { },
Run::Build => { return Ok(()); },
}
let mut data_file = TempFile::new(&tmp_json)?;
data_file.write_all(json::to_string(&data)?.as_bytes())?;
data_file.flush()?;
let mut script_file = TempFile::new(&tmp_py)?;
script_file.write_all(script.as_bytes())?;
script_file.flush()?;
let res
= process::Command::new("python3")
.arg(format!("{}", tmp_py.display()))
.output()?;
if res.status.success() {
Ok(())
} else {
let stdout: String
= res.stdout.into_iter().map(char::from).collect();
let stderr: String
= res.stderr.into_iter().map(char::from).collect();
Err(MplError::PyError(stdout, stderr))
}
}
/// Alias for `self.run(Run::Show)`.
pub fn show(&self) -> MplResult<()> { self.run(Run::Show) }
/// Alias for `self.run(Run::Save(path))`.
pub fn save<P: AsRef<Path>>(&self, path: P) -> MplResult<()> {
self.run(Run::Save(path.as_ref().to_path_buf()))
}
/// Alias for `self.run(Run::SaveShow(path))`
pub fn saveshow<P: AsRef<Path>>(&self, path: P) -> MplResult<()> {
self.run(Run::SaveShow(path.as_ref().to_path_buf()))
}
}
/// A single subplot's position in a [`gridspec`][Mpl::new_gridspec].
///
/// The position is specified by two integer ranges representing a 2D slice of
/// the `gridspec`.
///
/// This type also allows for shared axes to be specified in the context of a
/// series of positions as a pair of integers: A given integer `k` refers to the
/// `Axes` object corresponding to the `k`-th position in the series; the first
/// is for the X-axis and the second is for the Y-axis.
///
/// The object
/// ```ignore
/// GSPos { i: 0..3, j: 2..3, sharex: Some(0), sharey: None }
/// ```
/// specifies a subplot covering the first three rows and second column of a
/// grid, sharing its X-axis with the first subplot in an implied sequence and
/// its Y-axis with no other.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct GSPos {
/// Vertical slice.
pub i: Range<usize>,
/// Horizontal slice.
pub j: Range<usize>,
/// Index of the `Axes` object with which to share the X-axis.
pub sharex: Option<usize>,
/// Index of the `Axes` object with which to share the Y-axis.
pub sharey: Option<usize>,
}
impl GSPos {
/// Create a new `GSPos` without any shared axes.
pub fn new(i: Range<usize>, j: Range<usize>) -> Self {
Self { i, j, sharex: None, sharey: None }
}
/// Create a new `GSPos` with shared axes.
pub fn new_shared(
i: Range<usize>,
j: Range<usize>,
sharex: Option<usize>,
sharey: Option<usize>,
) -> Self
{
Self { i, j, sharex, sharey }
}
/// Set the axis sharing.
pub fn share(mut self, axis: Axis2, target: Option<usize>) -> Self {
match axis {
Axis2::X => { self.sharex = target; },
Axis2::Y => { self.sharey = target; },
Axis2::Both => { self.sharex = target; self.sharey = target; },
}
self
}
/// Set the X-axis sharing.
pub fn sharex(mut self, target: Option<usize>) -> Self {
self.sharex = target;
self
}
/// Set the Y-axis sharing.
pub fn sharey(mut self, target: Option<usize>) -> Self {
self.sharey = target;
self
}
}
/// Determines the final IO command(s) in the plotting script generated by an
/// [`Mpl`].
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Run {
/// Call `pyplot.show` to display interactive figure(s).
Show,
/// Call `pyplot.Figure.savefig` to save the plot to a file.
Save(PathBuf),
/// `Save` and then `Show`.
SaveShow(PathBuf),
/// Perform no plotting IO, just build the script and call Python on it (for
/// debugging purposes).
Debug,
/// Build the script, but don't call Python on it (for debugging purposes).
Build,
}
impl<T: Matplotlib + 'static> From<T> for Mpl {
fn from(item: T) -> Self {
let mut mpl = Self::default();
mpl.then(item);
mpl
}
}
impl std::ops::BitAnd<Mpl> for Mpl {
type Output = Mpl;
fn bitand(mut self, mut rhs: Mpl) -> Self::Output {
self.prelude.append(&mut rhs.prelude);
self.commands.append(&mut rhs.commands);
self
}
}
impl std::ops::BitAndAssign<Mpl> for Mpl {
fn bitand_assign(&mut self, mut rhs: Mpl) {
self.prelude.append(&mut rhs.prelude);
self.commands.append(&mut rhs.commands);
}
}
impl<T> std::ops::BitAnd<T> for Mpl
where T: Matplotlib + 'static
{
type Output = Mpl;
fn bitand(mut self, rhs: T) -> Self::Output {
self.then(rhs);
self
}
}
impl<T> std::ops::BitAndAssign<T> for Mpl
where T: Matplotlib + 'static
{
fn bitand_assign(&mut self, rhs: T) {
self.then(rhs);
}
}
impl std::ops::BitAnd<Run> for Mpl {
type Output = Mpl;
fn bitand(self, mode: Run) -> Self::Output {
match self.run(mode) {
Ok(_) => self,
Err(err) => { panic!("error in Mpl::bitand: {err}"); },
}
}
}
impl std::ops::BitAndAssign<Run> for Mpl {
fn bitand_assign(&mut self, mode: Run) {
match self.run(mode) {
Ok(_) => { },
Err(err) => { panic!("error in Mpl::bitand_assign: {err}"); },
}
}
}
impl std::ops::BitOr<Run> for Mpl {
type Output = ();
fn bitor(self, mode: Run) -> Self::Output {
match self.run(mode) {
Ok(_) => (),
Err(err) => { panic!("error in Mpl::bitor: {err}"); },
}
}
}
impl std::ops::BitOr<Run> for &Mpl {
type Output = ();
fn bitor(self, mode: Run) -> Self::Output {
match self.run(mode) {
Ok(_) => (),
Err(err) => { panic!("error in Mpl::bitor: {err}"); },
}
}
}