mathhook_core/functions/polynomials/
chebyshev.rs

1//! Chebyshev Polynomial Intelligence
2//!
3//! Mathematically accurate implementation of Chebyshev polynomials T_n(x), U_n(x)
4//! for approximation theory with verified properties.
5
6use crate::core::{Expression, Symbol};
7use crate::functions::properties::*;
8use std::collections::HashMap;
9use std::sync::Arc;
10
11/// Chebyshev Polynomial Intelligence
12///
13/// Complete mathematical intelligence for Chebyshev polynomials
14pub struct ChebyshevIntelligence {
15    /// Function properties for Chebyshev polynomials
16    properties: HashMap<String, FunctionProperties>,
17}
18
19impl Default for ChebyshevIntelligence {
20    fn default() -> Self {
21        Self::new()
22    }
23}
24
25impl ChebyshevIntelligence {
26    /// Create new Chebyshev polynomial intelligence system
27    pub fn new() -> Self {
28        let mut intelligence = Self {
29            properties: HashMap::with_capacity(8),
30        };
31
32        intelligence.initialize_chebyshev_polynomials();
33
34        intelligence
35    }
36
37    /// Get all Chebyshev polynomial properties
38    pub fn get_properties(&self) -> HashMap<String, FunctionProperties> {
39        self.properties.clone()
40    }
41
42    /// Check if function is a Chebyshev polynomial
43    pub fn has_function(&self, name: &str) -> bool {
44        self.properties.contains_key(name)
45    }
46
47    /// Initialize Chebyshev polynomials with ABSOLUTE MATHEMATICAL ACCURACY
48    fn initialize_chebyshev_polynomials(&mut self) {
49        // Chebyshev Polynomials T_n(x) - MATHEMATICALLY VERIFIED
50        // Reference: Approximation Theory, Numerical Analysis textbooks
51        // Used for polynomial approximation and numerical integration
52        self.properties.insert(
53            "chebyshev_first".to_owned(),
54            FunctionProperties::Polynomial(Box::new(PolynomialProperties {
55                family: PolynomialFamily::Chebyshev,
56                // THREE-TERM RECURRENCE RELATION (MATHEMATICALLY VERIFIED)
57                // T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)
58                recurrence: ThreeTermRecurrence {
59                    // Coefficient of x*T_n(x): 2x
60                    alpha_coeff: Expression::mul(vec![
61                        Expression::integer(2),
62                        Expression::symbol("x"),
63                    ]),
64
65                    // No constant term
66                    beta_coeff: Expression::integer(0),
67
68                    // Coefficient of T_{n-1}(x): -1
69                    gamma_coeff: Expression::integer(-1),
70
71                    // Initial conditions (mathematically verified)
72                    // T_0(x) = 1, T_1(x) = x
73                    initial_conditions: (Expression::integer(1), Expression::symbol("x")),
74                },
75
76                // Orthogonality properties (mathematically verified)
77                // ∫_{-1}^{1} T_m(x) T_n(x) / √(1-x²) dx = π/2 δ_{mn} (n > 0), π δ_{0n} (n = 0)
78                orthogonality: Some(OrthogonalityData {
79                    // Weight function: w(x) = 1/√(1-x²)
80                    weight_function: Expression::function(
81                        "chebyshev_weight",
82                        vec![Expression::symbol("x")],
83                    ),
84
85                    // Orthogonality interval: [-1, 1]
86                    interval: (Expression::integer(-1), Expression::integer(1)),
87
88                    // Normalization depends on n
89                    norm_squared: Expression::function(
90                        "chebyshev_norm_squared",
91                        vec![Expression::symbol("n")],
92                    ),
93                }),
94
95                // Rodrigues' formula (alternative representation)
96                rodrigues_formula: Some(RodriguesFormula {
97                    formula: "T_n(x) = cos(n arccos(x))".to_owned(),
98                    normalization: Expression::integer(1),
99                    weight_function: Expression::function(
100                        "chebyshev_weight",
101                        vec![Expression::symbol("x")],
102                    ),
103                }),
104
105                // Generating function (mathematically verified)
106                // (1-tx)/(1-2tx+t²) = Σ_{n=0}^∞ T_n(x) t^n
107                generating_function: Some(GeneratingFunction {
108                    function: Expression::function(
109                        "chebyshev_generating",
110                        vec![Expression::symbol("x"), Expression::symbol("t")],
111                    ),
112                    gf_type: GeneratingFunctionType::Ordinary,
113                }),
114
115                // Special values (mathematically verified)
116                special_values: vec![
117                    // T_n(1) = 1 for all n ≥ 0
118                    SpecialValue {
119                        input: "1".to_owned(),
120                        output: Expression::integer(1),
121                        latex_explanation: "T_n(1) = 1 \\text{ for all } n \\geq 0".to_owned(),
122                    },
123                    // T_n(-1) = (-1)^n for all n ≥ 0
124                    SpecialValue {
125                        input: "-1".to_owned(),
126                        output: Expression::pow(Expression::integer(-1), Expression::symbol("n")),
127                        latex_explanation: "T_n(-1) = (-1)^n \\text{ for all } n \\geq 0".to_owned(),
128                    },
129                ],
130
131                // Evaluation method: Recurrence is most stable
132                evaluation_method: EvaluationMethod::Recurrence,
133
134                // Numerical evaluator using recurrence relation),
135
136                // Symbolic expansion method for intelligence-driven computation
137                symbolic_expander: Some(super::super::properties::special::SymbolicExpander::Custom(
138                    super::symbolic::expand_chebyshev_first_symbolic
139                )),
140
141                antiderivative_rule: AntiderivativeRule {
142                    rule_type: AntiderivativeRuleType::Custom {
143                        builder: Arc::new(|var: Symbol| {
144                            Expression::integral(
145                                Expression::function("chebyshev_first", vec![Expression::symbol(var.clone())]),
146                                var
147                            )
148                        }),
149                    },
150                    result_template: "∫T_n(x) dx (symbolic - orthogonal polynomial integration requires specialized techniques)".to_owned(),
151                    constant_handling: ConstantOfIntegration::AddConstant,
152                },
153                wolfram_name: None,
154            })),
155        );
156
157        // Chebyshev Polynomials of Second Kind U_n(x)
158        self.properties.insert(
159            "chebyshev_second".to_owned(),
160            FunctionProperties::Polynomial(Box::new(PolynomialProperties {
161                family: PolynomialFamily::Chebyshev,
162                // THREE-TERM RECURRENCE RELATION (MATHEMATICALLY VERIFIED)
163                // U_{n+1}(x) = 2x U_n(x) - U_{n-1}(x)
164                recurrence: ThreeTermRecurrence {
165                    // Same recurrence as T_n but different initial conditions
166                    alpha_coeff: Expression::mul(vec![
167                        Expression::integer(2),
168                        Expression::symbol("x"),
169                    ]),
170                    beta_coeff: Expression::integer(0),
171                    gamma_coeff: Expression::integer(-1),
172
173                    // Initial conditions (mathematically verified)
174                    // U_0(x) = 1, U_1(x) = 2x
175                    initial_conditions: (
176                        Expression::integer(1),
177                        Expression::mul(vec![Expression::integer(2), Expression::symbol("x")]),
178                    ),
179                },
180
181                // Orthogonality properties (mathematically verified)
182                // ∫_{-1}^{1} U_m(x) U_n(x) √(1-x²) dx = π/2 δ_{mn}
183                orthogonality: Some(OrthogonalityData {
184                    // Weight function: w(x) = √(1-x²)
185                    weight_function: Expression::function(
186                        "chebyshev_u_weight",
187                        vec![Expression::symbol("x")],
188                    ),
189
190                    // Orthogonality interval: [-1, 1]
191                    interval: (Expression::integer(-1), Expression::integer(1)),
192
193                    // Normalization: π/2
194                    norm_squared: Expression::function("chebyshev_u_norm", vec![]),
195                }),
196
197                rodrigues_formula: None, // Different representation for U_n
198                generating_function: Some(GeneratingFunction {
199                    function: Expression::function(
200                        "chebyshev_u_generating",
201                        vec![Expression::symbol("x"), Expression::symbol("t")],
202                    ),
203                    gf_type: GeneratingFunctionType::Ordinary,
204                }),
205
206                special_values: vec![
207                    // U_n(1) = n + 1
208                    SpecialValue {
209                        input: "1".to_owned(),
210                        output: Expression::add(vec![
211                            Expression::symbol("n"),
212                            Expression::integer(1),
213                        ]),
214                        latex_explanation: "U_n(1) = n + 1".to_owned(),
215                    },
216                ],
217
218                evaluation_method: EvaluationMethod::Recurrence,
219
220                // Numerical evaluator using recurrence relation),
221
222                // Symbolic expansion method for intelligence-driven computation
223                symbolic_expander: Some(super::super::properties::special::SymbolicExpander::Custom(
224                    super::symbolic::expand_chebyshev_second_symbolic
225                )),
226
227                antiderivative_rule: AntiderivativeRule {
228                    rule_type: AntiderivativeRuleType::Custom {
229                        builder: Arc::new(|var: Symbol| {
230                            Expression::integral(
231                                Expression::function("chebyshev_second", vec![Expression::symbol(var.clone())]),
232                                var
233                            )
234                        }),
235                    },
236                    result_template: "∫U_n(x) dx (symbolic - orthogonal polynomial integration requires specialized techniques)".to_owned(),
237                    constant_handling: ConstantOfIntegration::AddConstant,
238                },
239                wolfram_name: None,
240            })),
241        );
242    }
243}