mathhook_core/calculus/integrals/
risch.rs

1//! Risch algorithm for symbolic integration
2//!
3//! Basic implementation covering:
4//! - Simple exponential and logarithmic functions
5//! - Rational function integration via Hermite reduction
6//! - Non-elementary detection
7//! - Completeness guarantee for basic cases
8//!
9//! The Risch algorithm is a decision procedure that either:
10//! 1. Computes the elementary antiderivative
11//! 2. Proves no elementary antiderivative exists
12//!
13//! This implementation handles exponential extensions (e^x, e^(ax)),
14//! logarithmic extensions (ln(x), 1/x patterns), and rational functions
15//! in their basic forms.
16
17pub mod differential_extension;
18pub mod helpers;
19pub mod hermite;
20pub mod rational;
21pub mod rde;
22
23use crate::core::{Expression, Number, Symbol};
24
25/// Risch integration result
26#[derive(Debug, Clone, PartialEq)]
27pub enum RischResult {
28    /// Integral found
29    Integral(Expression),
30
31    /// No elementary integral exists (proved by algorithm)
32    NonElementary,
33
34    /// Cannot determine (deferred to symbolic)
35    Unknown,
36}
37
38/// Main Risch integration entry point
39///
40/// Attempts to integrate using the Risch algorithm. Returns Some(result)
41/// if successful, or None if the integral is proven non-elementary or
42/// cannot be determined by the basic Risch implementation.
43///
44/// # Arguments
45///
46/// * `expr` - The expression to integrate
47/// * `var` - The variable of integration
48///
49/// # Examples
50///
51/// ```rust
52/// use mathhook_core::calculus::integrals::risch::try_risch_integration;
53/// use mathhook_core::Expression;
54/// use mathhook_core::symbol;
55///
56/// let x = symbol!(x);
57/// let integrand = Expression::function("exp", vec![Expression::symbol(x.clone())]);
58///
59/// let result = try_risch_integration(&integrand, &x);
60/// assert!(result.is_some());
61/// ```
62pub fn try_risch_integration(expr: &Expression, var: &Symbol) -> Option<Expression> {
63    let extensions = differential_extension::build_extension_tower(expr, var.clone())?;
64
65    let (rational_part, transcendental_part) = hermite::hermite_reduction(expr, &extensions)?;
66
67    let rational_integral = if rational_part != Expression::integer(0) {
68        if let Some((num, den)) = extract_rational_form(&rational_part) {
69            let result = rational::integrate_rational(&num, &den, var);
70            rational::assemble_integral(&result)
71        } else {
72            Expression::function(
73                "integrate",
74                vec![rational_part, Expression::symbol(var.clone())],
75            )
76        }
77    } else {
78        Expression::integer(0)
79    };
80
81    match rde::integrate_transcendental(&transcendental_part, &extensions, var) {
82        RischResult::Integral(result) => {
83            if rational_integral == Expression::integer(0) {
84                Some(result)
85            } else {
86                Some(Expression::add(vec![rational_integral, result]))
87            }
88        }
89        RischResult::NonElementary => None,
90        RischResult::Unknown => None,
91    }
92}
93
94/// Extract rational function form P/Q from expression
95///
96/// Attempts to identify division expressions and extract numerator/denominator
97fn extract_rational_form(expr: &Expression) -> Option<(Expression, Expression)> {
98    match expr {
99        Expression::Mul(factors) => {
100            let mut numerator_parts = Vec::new();
101            let mut denominator_parts = Vec::new();
102            let mut found_division = false;
103
104            for factor in factors.iter() {
105                if let Expression::Pow(base, exp) = factor {
106                    if let Expression::Number(Number::Integer(n)) = exp.as_ref() {
107                        if *n < 0 {
108                            denominator_parts.push(base.as_ref().clone());
109                            found_division = true;
110                            continue;
111                        }
112                    }
113                }
114                numerator_parts.push(factor.clone());
115            }
116
117            if found_division {
118                let num = if numerator_parts.is_empty() {
119                    Expression::integer(1)
120                } else if numerator_parts.len() == 1 {
121                    numerator_parts[0].clone()
122                } else {
123                    Expression::mul(numerator_parts)
124                };
125
126                let den = if denominator_parts.len() == 1 {
127                    denominator_parts[0].clone()
128                } else {
129                    Expression::mul(denominator_parts)
130                };
131
132                return Some((num, den));
133            }
134
135            None
136        }
137        _ => None,
138    }
139}
140
141#[cfg(test)]
142mod tests {
143    use super::*;
144    use crate::symbol;
145
146    #[test]
147    fn test_risch_basic_exp() {
148        let x = symbol!(x);
149        let integrand = Expression::function("exp", vec![Expression::symbol(x.clone())]);
150
151        let result = try_risch_integration(&integrand, &x);
152        assert!(result.is_some());
153    }
154
155    #[test]
156    fn test_risch_basic_log_derivative() {
157        let x = symbol!(x);
158        let integrand = Expression::div(Expression::integer(1), Expression::symbol(x.clone()));
159
160        let result = try_risch_integration(&integrand, &x);
161        assert!(result.is_some());
162    }
163
164    #[test]
165    fn test_extract_rational_form() {
166        let x = symbol!(x);
167
168        let expr = Expression::mul(vec![
169            Expression::add(vec![
170                Expression::pow(Expression::symbol(x.clone()), Expression::integer(2)),
171                Expression::integer(1),
172            ]),
173            Expression::pow(
174                Expression::add(vec![Expression::symbol(x.clone()), Expression::integer(-1)]),
175                Expression::integer(-1),
176            ),
177        ]);
178
179        let result = extract_rational_form(&expr);
180        assert!(result.is_some());
181
182        if let Some((num, den)) = result {
183            println!("Extracted: {} / {}", num, den);
184        }
185    }
186}