pub fn zeta(s: &Expression) -> ExpressionExpand description
Riemann zeta function ζ(s)
The Riemann zeta function extends the series Σ 1/n^s to the entire complex plane via analytic continuation.
§Mathematical Properties
- ζ(2) = π²/6 (Basel problem)
- ζ(4) = π⁴/90
- ζ(6) = π⁶/945
- ζ(8) = π⁸/9450
- ζ(10) = π¹⁰/93555
- ζ(0) = -1/2
- ζ(-1) = -1/12 (famous result used in string theory)
- ζ(-2n) = 0 for positive integers n (trivial zeros)
- ζ(-3) = 1/120
- ζ(-5) = -1/252
- ζ(-7) = 1/240
- Pole at s=1 with residue 1
- Functional equation: ζ(s) = 2^s π^(s-1) sin(πs/2) Γ(1-s) ζ(1-s)
§Arguments
s- Expression argument to evaluate zeta function at
§Examples
use mathhook_core::functions::special::zeta;
use mathhook_core::{Expression, Number};
let zeta_2 = zeta(&Expression::Number(Number::Integer(2)));