zeta

Function zeta 

Source
pub fn zeta(s: &Expression) -> Expression
Expand description

Riemann zeta function ζ(s)

The Riemann zeta function extends the series Σ 1/n^s to the entire complex plane via analytic continuation.

§Mathematical Properties

  • ζ(2) = π²/6 (Basel problem)
  • ζ(4) = π⁴/90
  • ζ(6) = π⁶/945
  • ζ(8) = π⁸/9450
  • ζ(10) = π¹⁰/93555
  • ζ(0) = -1/2
  • ζ(-1) = -1/12 (famous result used in string theory)
  • ζ(-2n) = 0 for positive integers n (trivial zeros)
  • ζ(-3) = 1/120
  • ζ(-5) = -1/252
  • ζ(-7) = 1/240
  • Pole at s=1 with residue 1
  • Functional equation: ζ(s) = 2^s π^(s-1) sin(πs/2) Γ(1-s) ζ(1-s)

§Arguments

  • s - Expression argument to evaluate zeta function at

§Examples

use mathhook_core::functions::special::zeta;
use mathhook_core::{Expression, Number};

let zeta_2 = zeta(&Expression::Number(Number::Integer(2)));