polygamma

Function polygamma 

Source
pub fn polygamma(n: i32, z: &Expression) -> Expression
Expand description

Polygamma function ψ^(n)(z)

The polygamma function is the (n+1)-th derivative of ln(Γ(z)): ψ^(n)(z) = d^(n+1)/dz^(n+1) ln(Γ(z))

§Special Cases

  • ψ^(0)(z) = ψ(z) (digamma)
  • ψ^(1)(z) = trigamma
  • ψ^(2)(z) = tetragamma

§Mathematical Properties

  • ψ^(1)(1) = π²/6 (trigamma at 1)
  • ψ^(n)(z+1) = ψ^(n)(z) + (-1)^n · n! / z^(n+1)

§Arguments

  • n - Order of derivative (0 = digamma, 1 = trigamma, etc.)
  • z - Argument

§Examples

use mathhook_core::{Expression, Number};
use mathhook_core::functions::special::polygamma;

let result = polygamma(0, &Expression::Number(Number::Integer(1)));
let trigamma = polygamma(1, &Expression::Number(Number::Integer(1)));