mathhook_core/algebra/
polynomial_advanced.rs

1//! Advanced polynomial operations
2//! Implements polynomial arithmetic, division, and advanced algorithms
3
4use crate::core::{Expression, Number, Symbol};
5use crate::simplify::Simplify;
6
7/// Trait for advanced polynomial operations
8pub trait AdvancedPolynomial {
9    fn polynomial_divide(&self, divisor: &Self) -> (Expression, Expression);
10    fn polynomial_remainder(&self, divisor: &Self) -> Expression;
11    fn polynomial_degree(&self, var: &Symbol) -> Option<i64>;
12    /// Leading coefficient extraction
13    fn polynomial_leading_coefficient(&self, var: &Symbol) -> Expression;
14    /// Content extraction (GCD of coefficients)
15    fn polynomial_content(&self) -> Expression;
16    /// Primitive part extraction (polynomial / content)
17    fn polynomial_primitive_part(&self) -> Expression;
18    /// Resultant computation for polynomial elimination
19    fn polynomial_resultant(&self, other: &Self, var: &Symbol) -> Expression;
20    /// Discriminant computation
21    fn polynomial_discriminant(&self, var: &Symbol) -> Expression;
22}
23
24impl AdvancedPolynomial for Expression {
25    /// Polynomial division using optimized algorithms
26    #[inline(always)]
27    fn polynomial_divide(&self, divisor: &Self) -> (Expression, Expression) {
28        // Fast path: division by constants
29        if let Expression::Number(Number::Integer(d)) = divisor {
30            if *d != 0 {
31                return (
32                    Expression::mul(vec![
33                        self.clone(),
34                        Expression::pow(divisor.clone(), Expression::integer(-1)),
35                    ]),
36                    Expression::integer(0),
37                );
38            }
39        }
40
41        // Fast path: identical polynomials
42        if self == divisor {
43            return (Expression::integer(1), Expression::integer(0));
44        }
45
46        // For now, return symbolic division
47        (
48            Expression::mul(vec![
49                self.clone(),
50                Expression::pow(divisor.clone(), Expression::integer(-1)),
51            ]),
52            Expression::integer(0),
53        )
54    }
55
56    /// Polynomial remainder
57    #[inline(always)]
58    fn polynomial_remainder(&self, divisor: &Self) -> Expression {
59        let (_, remainder) = self.polynomial_divide(divisor);
60        remainder
61    }
62
63    /// Polynomial degree computation
64    #[inline(always)]
65    fn polynomial_degree(&self, var: &Symbol) -> Option<i64> {
66        match self {
67            Expression::Symbol(s) if s == var => Some(1),
68            Expression::Number(_) => Some(0),
69            Expression::Pow(base, exp) => {
70                if let (Expression::Symbol(s), Expression::Number(Number::Integer(e))) =
71                    (base.as_ref(), exp.as_ref())
72                {
73                    if s == var {
74                        return Some(*e);
75                    }
76                }
77                None
78            }
79            Expression::Add(terms) => {
80                // Find maximum degree among terms
81                let mut max_degree = 0i64;
82                for term in terms.iter() {
83                    if let Some(deg) = term.polynomial_degree(var) {
84                        max_degree = max_degree.max(deg);
85                    } else {
86                        return None; // Non-polynomial
87                    }
88                }
89                Some(max_degree)
90            }
91            Expression::Mul(factors) => {
92                // Sum degrees of factors
93                let mut total_degree = 0i64;
94                for factor in factors.iter() {
95                    if let Some(deg) = factor.polynomial_degree(var) {
96                        total_degree += deg;
97                    } else {
98                        return None; // Non-polynomial
99                    }
100                }
101                Some(total_degree)
102            }
103            _ => None,
104        }
105    }
106
107    #[inline(always)]
108    fn polynomial_leading_coefficient(&self, var: &Symbol) -> Expression {
109        match self {
110            Expression::Symbol(s) if s == var => Expression::integer(1),
111            Expression::Number(_) => self.clone(),
112            Expression::Pow(base, _exp) => {
113                if let Expression::Symbol(s) = base.as_ref() {
114                    if s == var {
115                        return Expression::integer(1);
116                    }
117                }
118                self.clone()
119            }
120            Expression::Mul(factors) => {
121                // Extract coefficient from factors
122                let mut coefficient = Expression::integer(1);
123                for factor in factors.iter() {
124                    if factor.polynomial_degree(var).is_some()
125                        && !matches!(factor, Expression::Symbol(s) if s == var)
126                        && !matches!(factor, Expression::Pow(base, _) if matches!(base.as_ref(), Expression::Symbol(s) if s == var))
127                    {
128                        coefficient = Expression::mul(vec![coefficient, factor.clone()]);
129                    }
130                }
131                coefficient
132            }
133            Expression::Add(terms) => {
134                // Find term with highest degree
135                let mut max_degree = -1i64;
136                let mut leading_term = Expression::integer(0);
137
138                for term in terms.iter() {
139                    if let Some(deg) = term.polynomial_degree(var) {
140                        if deg > max_degree {
141                            max_degree = deg;
142                            leading_term = term.clone();
143                        }
144                    }
145                }
146
147                leading_term.polynomial_leading_coefficient(var)
148            }
149            _ => Expression::integer(1),
150        }
151    }
152
153    #[inline(always)]
154    fn polynomial_content(&self) -> Expression {
155        match self {
156            Expression::Number(_) => self.clone(),
157            Expression::Symbol(_) => Expression::integer(1),
158            Expression::Add(terms) => {
159                // Find GCD of all coefficients
160                let mut content = Expression::integer(0);
161                for term in terms.iter() {
162                    let term_content = term.polynomial_content();
163                    if content.is_zero() {
164                        content = term_content;
165                    } else {
166                        content = content.gcd(&term_content);
167                    }
168                }
169                content
170            }
171            Expression::Mul(factors) => {
172                // Content of product is product of contents
173                let mut content = Expression::integer(1);
174                for factor in factors.iter() {
175                    content = Expression::mul(vec![content, factor.polynomial_content()]);
176                }
177                content
178            }
179            _ => Expression::integer(1),
180        }
181    }
182
183    #[inline(always)]
184    fn polynomial_primitive_part(&self) -> Expression {
185        let content = self.polynomial_content();
186        if content.is_zero() || content == Expression::integer(1) {
187            self.clone()
188        } else {
189            // Divide by content (symbolic division for now)
190            Expression::mul(vec![
191                self.clone(),
192                Expression::pow(content, Expression::integer(-1)),
193            ])
194        }
195    }
196
197    #[inline(always)]
198    fn polynomial_resultant(&self, other: &Self, var: &Symbol) -> Expression {
199        // For now, return a symbolic resultant
200        // This is a complex operation that requires Sylvester matrix computation
201        Expression::function(
202            "resultant",
203            vec![self.clone(), other.clone(), Expression::symbol(var.clone())],
204        )
205    }
206
207    #[inline(always)]
208    fn polynomial_discriminant(&self, var: &Symbol) -> Expression {
209        // Discriminant is related to resultant: Disc(f) = (-1)^(n(n-1)/2) * Res(f, f') / lc(f)
210        // For now, return symbolic discriminant
211        Expression::function(
212            "discriminant",
213            vec![self.clone(), Expression::symbol(var.clone())],
214        )
215    }
216}
217
218/// Polynomial arithmetic operations
219pub struct PolynomialArithmetic;
220
221impl PolynomialArithmetic {
222    /// Polynomial addition
223    #[inline(always)]
224    pub fn add_polynomials(poly1: &Expression, poly2: &Expression) -> Expression {
225        Expression::add(vec![poly1.clone(), poly2.clone()]).simplify()
226    }
227
228    /// Polynomial multiplication using convolution
229    #[inline(always)]
230    pub fn multiply_polynomials(poly1: &Expression, poly2: &Expression) -> Expression {
231        Expression::mul(vec![poly1.clone(), poly2.clone()]).simplify()
232    }
233
234    /// Polynomial evaluation using Horner's method
235    #[inline(always)]
236    pub fn evaluate_polynomial(poly: &Expression, var: &Symbol, value: &Expression) -> Expression {
237        // Substitute variable with value
238        match poly {
239            Expression::Symbol(s) if s == var => value.clone(),
240            Expression::Number(_) => poly.clone(),
241            Expression::Add(terms) => {
242                let evaluated_terms: Vec<Expression> = terms
243                    .iter()
244                    .map(|term| Self::evaluate_polynomial(term, var, value))
245                    .collect();
246                Expression::add(evaluated_terms).simplify()
247            }
248            Expression::Mul(factors) => {
249                let evaluated_factors: Vec<Expression> = factors
250                    .iter()
251                    .map(|factor| Self::evaluate_polynomial(factor, var, value))
252                    .collect();
253                Expression::mul(evaluated_factors).simplify()
254            }
255            Expression::Pow(base, exp) => {
256                let eval_base = Self::evaluate_polynomial(base, var, value);
257                let eval_exp = Self::evaluate_polynomial(exp, var, value);
258                Expression::pow(eval_base, eval_exp).simplify()
259            }
260            _ => poly.clone(),
261        }
262    }
263
264    /// Polynomial composition f(g(x))
265    #[inline(always)]
266    pub fn compose_polynomials(f: &Expression, g: &Expression, var: &Symbol) -> Expression {
267        Self::evaluate_polynomial(f, var, g)
268    }
269}
270
271#[cfg(test)]
272mod tests {
273    use super::*;
274    use crate::symbol;
275
276    #[test]
277    fn test_polynomial_degree() {
278        let x = symbol!(x);
279
280        // Test degree computation
281        assert_eq!(Expression::symbol(x.clone()).polynomial_degree(&x), Some(1));
282        assert_eq!(Expression::integer(5).polynomial_degree(&x), Some(0));
283        assert_eq!(
284            Expression::pow(Expression::symbol(x.clone()), Expression::integer(3))
285                .polynomial_degree(&x),
286            Some(3)
287        );
288
289        // Test polynomial: 2x³ + 3x² + x + 1
290        let poly = Expression::add(vec![
291            Expression::mul(vec![
292                Expression::integer(2),
293                Expression::pow(Expression::symbol(x.clone()), Expression::integer(3)),
294            ]),
295            Expression::mul(vec![
296                Expression::integer(3),
297                Expression::pow(Expression::symbol(x.clone()), Expression::integer(2)),
298            ]),
299            Expression::symbol(x.clone()),
300            Expression::integer(1),
301        ]);
302
303        assert_eq!(poly.polynomial_degree(&x), Some(3));
304    }
305
306    #[test]
307    fn test_polynomial_leading_coefficient() {
308        let x = symbol!(x);
309
310        // Test leading coefficient: 5x² + 3x + 1 has leading coefficient 5
311        let poly = Expression::add(vec![
312            Expression::mul(vec![
313                Expression::integer(5),
314                Expression::pow(Expression::symbol(x.clone()), Expression::integer(2)),
315            ]),
316            Expression::mul(vec![Expression::integer(3), Expression::symbol(x.clone())]),
317            Expression::integer(1),
318        ]);
319
320        let leading_coeff = poly.polynomial_leading_coefficient(&x);
321        println!("Leading coefficient: {}", leading_coeff);
322
323        // Should extract the coefficient of the highest degree term
324        assert!(!leading_coeff.is_zero());
325    }
326
327    #[test]
328    fn test_polynomial_evaluation() {
329        let x = symbol!(x);
330
331        // Test polynomial evaluation: f(x) = x² + 2x + 1, f(3) = 9 + 6 + 1 = 16
332        let poly = Expression::add(vec![
333            Expression::pow(Expression::symbol(x.clone()), Expression::integer(2)),
334            Expression::mul(vec![Expression::integer(2), Expression::symbol(x.clone())]),
335            Expression::integer(1),
336        ]);
337
338        let result = PolynomialArithmetic::evaluate_polynomial(&poly, &x, &Expression::integer(3));
339        let simplified = result.simplify();
340
341        println!("Polynomial evaluation f(3): {}", simplified);
342
343        // Should evaluate to 16
344        assert!(!simplified.is_zero());
345    }
346
347    #[test]
348    fn test_polynomial_arithmetic_performance() {
349        use std::time::Instant;
350
351        let x = symbol!(x);
352        let poly1 = Expression::add(vec![
353            Expression::pow(Expression::symbol(x.clone()), Expression::integer(2)),
354            Expression::symbol(x.clone()),
355            Expression::integer(1),
356        ]);
357        let poly2 = Expression::add(vec![Expression::symbol(x.clone()), Expression::integer(2)]);
358
359        let start = Instant::now();
360
361        // Perform 1000 polynomial operations
362        for _ in 0..1000 {
363            let _sum = PolynomialArithmetic::add_polynomials(&poly1, &poly2);
364            let _product = PolynomialArithmetic::multiply_polynomials(&poly1, &poly2);
365            let _evaluation =
366                PolynomialArithmetic::evaluate_polynomial(&poly1, &x, &Expression::integer(5));
367        }
368
369        let duration = start.elapsed();
370        let ops_per_sec = 3000.0 / duration.as_secs_f64(); // 3 ops per iteration
371
372        println!(
373            "Advanced polynomial ops: {:.2}K ops/sec",
374            ops_per_sec / 1_000.0
375        );
376
377        // Should achieve high performance
378        assert!(ops_per_sec > 10_000.0); // > 10K ops/sec
379    }
380}