Module groebner

Module groebner 

Source
Expand description

Gröbner Basis Computation

Implements Buchberger’s algorithm for computing Gröbner bases of polynomial ideals. Supports multiple monomial orderings and provides tools for ideal membership testing, solving systems of polynomial equations, and computational algebraic geometry.

Re-exports§

pub use crate::core::polynomial::sparse_polynomial::expression_to_sparse_polynomial;
pub use crate::core::polynomial::sparse_polynomial::sparse_polynomial_to_expression;
pub use crate::core::polynomial::sparse_polynomial::Monomial;
pub use crate::core::polynomial::sparse_polynomial::SparsePolynomial;

Structs§

GroebnerBasis
Represents a Gröbner basis for a polynomial ideal

Enums§

MonomialOrder
Monomial ordering types

Traits§

MonomialOrdering
Trait for comparing monomials according to a specific ordering

Functions§

buchberger_algorithm
Compute Gröbner basis using Buchberger’s algorithm
efficient_buchberger_algorithm
Compute Gröbner basis using efficient sparse polynomial representation
poly_reduce
Reduce a polynomial modulo a set of polynomials (one step)
poly_reduce_completely
Reduce a polynomial completely modulo a set of polynomials
s_polynomial
Compute the S-polynomial of two polynomials