Expand description
Matrix equation solver for noncommutative algebra
Handles equations involving matrices, operators, and quaternions where multiplication order matters. Distinguishes between left and right division.
§Mathematical Background: Why Order Matters in Matrix Equations
In commutative algebra (scalars), multiplication order doesn’t matter:
a * b = b * aa * x = bcan be solved asx = b / a = b * (1/a) = (1/a) * b
But in noncommutative algebra (matrices, operators, quaternions), order is critical:
A * B ≠ B * A(in general)- Division must distinguish LEFT from RIGHT
§Left Division: A*X = B
To solve A*X = B for X, we multiply both sides by A^(-1) on the LEFT:
A*X = B
A^(-1) * (A*X) = A^(-1) * B // Multiply left by A^(-1)
(A^(-1) * A) * X = A^(-1) * B // Associativity
I * X = A^(-1) * B // A^(-1)*A = I
X = A^(-1) * B // Solution§Right Division: X*A = B
To solve X*A = B for X, we multiply both sides by A^(-1) on the RIGHT:
X*A = B
(X*A) * A^(-1) = B * A^(-1) // Multiply right by A^(-1)
X * (A*A^(-1)) = B * A^(-1) // Associativity
X * I = B * A^(-1) // A*A^(-1) = I
X = B * A^(-1) // Solution§Why We Can’t Swap Order
In general, A^(-1) * B ≠ B * A^(-1), so:
- Solution to
A*X = BisX = A^(-1)*B(NOTB*A^(-1)) - Solution to
X*A = BisX = B*A^(-1)(NOTA^(-1)*B)
§Real-World Examples
Linear Algebra: Solving A*x = b for vector x
Ais coefficient matrixxis unknown vectorbis result vector- Solution:
x = A^(-1)*b(left multiplication)
Quantum Mechanics: Eigenvalue equations H*ψ = E*ψ
His Hamiltonian operatorψis wavefunction (eigenstate)Eis energy (eigenvalue, commutative)
Quaternions: 3D rotations q*v*conj(q)
qis rotation quaternionvis vector (as quaternion)- Order matters:
q*v ≠ v*q
Structs§
- Matrix
Equation Solver - Matrix equation solver specialized for noncommutative types