mathhook_core/algebra/solvers/
systems.rs

1//! Solves systems of linear and polynomial equations
2//!
3//! Linear systems: Uses LU decomposition via Matrix::solve()
4//! Polynomial systems: Uses Gröbner basis computation (Buchberger's algorithm)
5
6use crate::algebra::groebner::{GroebnerBasis, MonomialOrder};
7use crate::algebra::polynomial_advanced::AdvancedPolynomial;
8use crate::algebra::solvers::{EquationSolver, SolverResult, SystemEquationSolver};
9use crate::core::{Expression, Number, Symbol};
10use crate::educational::step_by_step::{Step, StepByStepExplanation};
11use crate::error::MathError;
12use crate::matrices::Matrix;
13use crate::simplify::Simplify;
14use num_bigint::BigInt;
15use num_rational::BigRational;
16
17/// System equation solver
18#[derive(Debug, Clone)]
19pub struct SystemSolver;
20
21impl Default for SystemSolver {
22    fn default() -> Self {
23        Self::new()
24    }
25}
26
27impl SystemSolver {
28    pub fn new() -> Self {
29        Self
30    }
31}
32
33impl EquationSolver for SystemSolver {
34    fn solve(&self, equation: &Expression, variable: &Symbol) -> SolverResult {
35        // For single equation, treat as linear
36        let linear_solver = crate::algebra::solvers::LinearSolver::new();
37        linear_solver.solve(equation, variable)
38    }
39
40    fn solve_with_explanation(
41        &self,
42        equation: &Expression,
43        variable: &Symbol,
44    ) -> (SolverResult, StepByStepExplanation) {
45        let linear_solver = crate::algebra::solvers::LinearSolver::new();
46        linear_solver.solve_with_explanation(equation, variable)
47    }
48
49    fn can_solve(&self, _equation: &Expression) -> bool {
50        true
51    }
52}
53
54impl SystemEquationSolver for SystemSolver {
55    /// Solve system of linear or polynomial equations
56    ///
57    /// Automatically detects system type and routes to appropriate solver:
58    /// - Linear systems: LU decomposition via Matrix::solve()
59    /// - Polynomial systems: Gröbner basis computation (Buchberger's algorithm)
60    ///
61    /// # Examples
62    ///
63    /// Linear system:
64    /// ```rust,ignore
65    /// use mathhook_core::algebra::solvers::{SystemSolver, SystemEquationSolver};
66    /// use mathhook_core::{Expression, symbol};
67    ///
68    /// let x = symbol!(x);
69    /// let y = symbol!(y);
70    /// // System: 2x + y = 5, x - y = 1
71    /// let eq1 = Expression::add(vec![
72    ///     Expression::mul(vec![Expression::integer(2), Expression::symbol(x.clone())]),
73    ///     Expression::symbol(y.clone()),
74    ///     Expression::integer(-5)
75    /// ]);
76    /// let eq2 = Expression::add(vec![
77    ///     Expression::symbol(x.clone()),
78    ///     Expression::mul(vec![Expression::integer(-1), Expression::symbol(y.clone())]),
79    ///     Expression::integer(-1)
80    /// ]);
81    /// let solver = SystemSolver::new();
82    /// let result = solver.solve_system(&[eq1, eq2], &[x, y]);
83    /// // Solution: x = 2, y = 1
84    /// ```
85    ///
86    /// Polynomial system:
87    /// ```rust,ignore
88    /// use mathhook_core::algebra::solvers::{SystemSolver, SystemEquationSolver};
89    /// use mathhook_core::{Expression, symbol, expr};
90    ///
91    /// let x = symbol!(x);
92    /// let y = symbol!(y);
93    /// // System: x² + y² = 1, x - y = 0
94    /// let eq1 = Expression::add(vec![expr!(x^2), expr!(y^2), expr!(-1)]);
95    /// let eq2 = expr!(x - y);
96    /// let solver = SystemSolver::new();
97    /// let result = solver.solve_system(&[eq1, eq2], &[x, y]);
98    /// // Finds intersection of circle and line
99    /// ```
100    fn solve_system(&self, equations: &[Expression], variables: &[Symbol]) -> SolverResult {
101        let n = equations.len();
102        let m = variables.len();
103
104        // Check if system is square
105        if n != m {
106            return SolverResult::NoSolution; // Underdetermined or overdetermined
107        }
108
109        if n == 0 {
110            return SolverResult::NoSolution;
111        }
112
113        // Detect system type and route to appropriate solver
114        if self.is_polynomial_system(equations, variables) {
115            return self.solve_polynomial_system_groebner(equations, variables);
116        }
117
118        // Use specialized 2x2 solver for linear systems
119        if n == 2 {
120            return self.solve_2x2_system(
121                &equations[0],
122                &equations[1],
123                &variables[0],
124                &variables[1],
125            );
126        }
127
128        // General NxN linear solver using Matrix::solve()
129        self.solve_nxn_system(equations, variables)
130    }
131
132    fn solve_system_with_explanation(
133        &self,
134        equations: &[Expression],
135        variables: &[Symbol],
136    ) -> (SolverResult, StepByStepExplanation) {
137        use crate::formatter::latex::LaTeXFormatter;
138
139        let result = self.solve_system(equations, variables);
140        let n = equations.len();
141
142        let to_latex = |expr: &Expression| -> String {
143            expr.to_latex(None).unwrap_or_else(|_| expr.to_string())
144        };
145
146        let mut steps = vec![Step::new(
147            "System of Equations",
148            format!(
149                "We have a system of {} equations with {} variables:\n{}",
150                equations.len(),
151                variables.len(),
152                equations
153                    .iter()
154                    .map(&to_latex)
155                    .collect::<Vec<_>>()
156                    .join("\n")
157            ),
158        )];
159
160        if n == 2 {
161            let (a1, b1, _c1) =
162                self.extract_linear_coefficients_2var(&equations[0], &variables[0], &variables[1]);
163            let use_substitution = matches!(
164                (&a1, &b1),
165                (Expression::Number(Number::Integer(1)), _)
166                    | (_, Expression::Number(Number::Integer(1)))
167            );
168
169            if use_substitution {
170                steps.push(Step::new("Substitution Method", "Solve system using substitution method\nStep 1: Isolate variable from one equation\nStep 2: Substitute into other equation\nStep 3: Solve for single variable\nStep 4: Back-substitute"));
171            } else {
172                steps.push(Step::new("Elimination Method", "Solve system using elimination (addition) method\nStep 1: Align equations\nStep 2: Multiply equations by appropriate factors\nStep 3: Add or subtract equations to eliminate one variable\nStep 4: Solve for remaining variable\nStep 5: Back-substitute"));
173            }
174        } else {
175            steps.push(Step::new(
176                "Method",
177                "Using LU decomposition with back-substitution",
178            ));
179        }
180
181        match &result {
182            SolverResult::Multiple(sols) if sols.len() == variables.len() => {
183                steps.push(Step::new(
184                    "Solve System",
185                    "Apply the chosen method to solve the system",
186                ));
187
188                let solution_str = variables
189                    .iter()
190                    .zip(sols.iter())
191                    .map(|(var, sol)| format!("{} = {}", var.name(), to_latex(sol)))
192                    .collect::<Vec<_>>()
193                    .join("\n");
194
195                steps.push(Step::new(
196                    "Extract Solutions",
197                    format!("From the final equations, we get:\n{}", solution_str),
198                ));
199
200                steps.push(Step::new("Unique Solution Found", format!("System has unique solution:\n{}\nThis is the only point that satisfies all equations", solution_str)));
201
202                steps.push(Step::new(
203                    "Verify Solution",
204                    "Check solution in all equations:\nBoth equations are satisfied".to_owned(),
205                ));
206            }
207            _ => {
208                steps.push(Step::new("Solve", "Applying solution method"));
209                steps.push(Step::new("Result", format!("Solution: {:?}", result)));
210            }
211        }
212
213        (result, StepByStepExplanation::new(steps))
214    }
215
216    // Note: can_solve_system is not in the trait, removing this method
217}
218
219impl SystemSolver {
220    /// Solve 2x2 linear system using elimination
221    fn solve_2x2_system(
222        &self,
223        eq1: &Expression,
224        eq2: &Expression,
225        var1: &Symbol,
226        var2: &Symbol,
227    ) -> SolverResult {
228        // Extract coefficients from both equations
229        // eq1: a1*x + b1*y + c1 = 0
230        // eq2: a2*x + b2*y + c2 = 0
231
232        let (a1, b1, c1) = self.extract_linear_coefficients_2var(eq1, var1, var2);
233        let (a2, b2, c2) = self.extract_linear_coefficients_2var(eq2, var1, var2);
234
235        // Solve using Cramer's rule or elimination
236        self.solve_using_cramers_rule(&a1, &b1, &c1, &a2, &b2, &c2)
237    }
238
239    /// Extract coefficients from linear equation in 2 variables
240    fn extract_linear_coefficients_2var(
241        &self,
242        equation: &Expression,
243        var1: &Symbol,
244        var2: &Symbol,
245    ) -> (Expression, Expression, Expression) {
246        match equation {
247            Expression::Add(terms) => {
248                let mut a_coeff = Expression::integer(0); // Coefficient of var1
249                let mut b_coeff = Expression::integer(0); // Coefficient of var2
250                let mut c_coeff = Expression::integer(0); // Constant term
251
252                for term in terms.iter() {
253                    if term == &Expression::symbol(var1.clone()) {
254                        a_coeff = Expression::integer(1);
255                    } else if term == &Expression::symbol(var2.clone()) {
256                        b_coeff = Expression::integer(1);
257                    } else if let Expression::Mul(factors) = term {
258                        let mut var1_found = false;
259                        let mut var2_found = false;
260                        let mut coeff = Expression::integer(1);
261
262                        for factor in factors.iter() {
263                            if factor == &Expression::symbol(var1.clone()) {
264                                var1_found = true;
265                            } else if factor == &Expression::symbol(var2.clone()) {
266                                var2_found = true;
267                            } else {
268                                coeff = Expression::mul(vec![coeff, factor.clone()]);
269                            }
270                        }
271
272                        if var1_found {
273                            a_coeff = coeff.simplify();
274                        } else if var2_found {
275                            b_coeff = coeff.simplify();
276                        } else {
277                            c_coeff = Expression::add(vec![c_coeff, term.clone()]);
278                        }
279                    } else {
280                        c_coeff = Expression::add(vec![c_coeff, term.clone()]);
281                    }
282                }
283
284                (a_coeff.simplify(), b_coeff.simplify(), c_coeff.simplify())
285            }
286            _ => (
287                Expression::integer(0),
288                Expression::integer(0),
289                equation.clone(),
290            ),
291        }
292    }
293
294    /// Solve 2x2 system using Cramer's rule
295    fn solve_using_cramers_rule(
296        &self,
297        a1: &Expression,
298        b1: &Expression,
299        c1: &Expression,
300        a2: &Expression,
301        b2: &Expression,
302        c2: &Expression,
303    ) -> SolverResult {
304        // System: a1*x + b1*y = -c1
305        //         a2*x + b2*y = -c2
306
307        match (&a1, &b1, &c1, &a2, &b2, &c2) {
308            (
309                Expression::Number(Number::Integer(a1_val)),
310                Expression::Number(Number::Integer(b1_val)),
311                Expression::Number(Number::Integer(c1_val)),
312                Expression::Number(Number::Integer(a2_val)),
313                Expression::Number(Number::Integer(b2_val)),
314                Expression::Number(Number::Integer(c2_val)),
315            ) => {
316                // Calculate determinant: det = a1*b2 - a2*b1
317                let det = a1_val * b2_val - a2_val * b1_val;
318
319                if det == 0 {
320                    // System is either dependent (infinite solutions) or inconsistent (no solution)
321                    // Check if equations are proportional
322                    if self.are_equations_proportional(
323                        *a1_val, *b1_val, *c1_val, *a2_val, *b2_val, *c2_val,
324                    ) {
325                        SolverResult::InfiniteSolutions
326                    } else {
327                        SolverResult::NoSolution
328                    }
329                } else {
330                    // Unique solution using Cramer's rule
331                    // x = ((-c1)*b2 - (-c2)*b1) / det
332                    // y = (a1*(-c2) - a2*(-c1)) / det
333
334                    let x_num = (-c1_val) * b2_val - (-c2_val) * b1_val;
335                    let y_num = a1_val * (-c2_val) - a2_val * (-c1_val);
336
337                    let x_sol = if x_num % det == 0 {
338                        Expression::integer(x_num / det)
339                    } else {
340                        Expression::Number(Number::rational(BigRational::new(
341                            BigInt::from(x_num),
342                            BigInt::from(det),
343                        )))
344                    };
345
346                    let y_sol = if y_num % det == 0 {
347                        Expression::integer(y_num / det)
348                    } else {
349                        Expression::Number(Number::rational(BigRational::new(
350                            BigInt::from(y_num),
351                            BigInt::from(det),
352                        )))
353                    };
354
355                    // Return as vector [x_solution, y_solution]
356                    SolverResult::Multiple(vec![x_sol, y_sol])
357                }
358            }
359            _ => SolverResult::NoSolution, // Complex coefficients not supported yet
360        }
361    }
362
363    /// Check if two equations are proportional (dependent system)
364    fn are_equations_proportional(
365        &self,
366        a1: i64,
367        b1: i64,
368        c1: i64,
369        a2: i64,
370        b2: i64,
371        c2: i64,
372    ) -> bool {
373        // Check if (a1, b1, c1) and (a2, b2, c2) are proportional
374        // This means a1/a2 = b1/b2 = c1/c2 (handling zero cases)
375
376        if a2 == 0 && b2 == 0 && c2 == 0 {
377            return a1 == 0 && b1 == 0 && c1 == 0; // Both equations are 0 = 0
378        }
379
380        // Find non-zero coefficient to use as reference
381        if a2 != 0 {
382            // Check if a1/a2 = b1/b2 = c1/c2
383            a1 * b2 == a2 * b1 && a1 * c2 == a2 * c1 && b1 * c2 == b2 * c1
384        } else if b2 != 0 {
385            // a2 = 0, use b2 as reference
386            a1 == 0 && b1 * c2 == b2 * c1
387        } else {
388            // a2 = b2 = 0, check if c2 != 0 and others are 0
389            a1 == 0 && b1 == 0
390        }
391    }
392
393    /// Solve NxN system using LU decomposition via Matrix::solve()
394    ///
395    /// Converts system of equations to coefficient matrix A and RHS vector b,
396    /// then delegates to Matrix::solve() which uses LU decomposition with
397    /// partial pivoting, forward substitution, and back substitution.
398    ///
399    /// Algorithm:
400    /// 1. Extract coefficient matrix A and constant vector b from equations
401    /// 2. Create Matrix and call Matrix::solve(b)
402    /// 3. Matrix::solve() performs: LU decomposition → forward sub → backward sub
403    ///
404    /// # Returns
405    ///
406    /// - `SolverResult::Multiple(solutions)`: Unique solution found
407    /// - `SolverResult::NoSolution`: Inconsistent system (no solution)
408    /// - `SolverResult::InfiniteSolutions`: Singular matrix (dependent system)
409    fn solve_nxn_system(&self, equations: &[Expression], variables: &[Symbol]) -> SolverResult {
410        let n = equations.len();
411
412        // Extract coefficient matrix A and constant vector b
413        // Each equation is: a₁x₁ + a₂x₂ + ... + aₙxₙ + c = 0
414        // We want: a₁x₁ + a₂x₂ + ... + aₙxₙ = -c
415        let mut a_rows: Vec<Vec<Expression>> = Vec::with_capacity(n);
416        let mut b_vec: Vec<Expression> = Vec::with_capacity(n);
417
418        for equation in equations {
419            let (coeffs, constant) = self.extract_coefficients_nvar(equation, variables);
420            // Negate constant to move to RHS: ax + by + c = 0 → ax + by = -c
421            let rhs = Expression::mul(vec![Expression::integer(-1), constant]).simplify();
422
423            a_rows.push(coeffs);
424            b_vec.push(rhs);
425        }
426
427        // Create Matrix and use solve()
428        let a_matrix = Matrix::dense(a_rows.clone());
429
430        match a_matrix.solve(&b_vec) {
431            Ok(solution) => {
432                // Simplify each solution element to produce clean results
433                let simplified: Vec<Expression> =
434                    solution.into_iter().map(|s| s.simplify()).collect();
435                SolverResult::Multiple(simplified)
436            }
437            Err(MathError::DivisionByZero) => {
438                // Singular matrix - distinguish no solution from infinite solutions
439                // Check if system is consistent by examining augmented matrix rank
440                self.detect_singular_system_type(&a_rows, &b_vec)
441            }
442            Err(_) => SolverResult::NoSolution,
443        }
444    }
445
446    /// Extract coefficients from linear equation in N variables
447    ///
448    /// Returns (coefficient_vector, constant_term)
449    fn extract_coefficients_nvar(
450        &self,
451        equation: &Expression,
452        variables: &[Symbol],
453    ) -> (Vec<Expression>, Expression) {
454        let n = variables.len();
455        let mut coefficients = vec![Expression::integer(0); n];
456        let mut constant = Expression::integer(0);
457
458        match equation {
459            Expression::Add(terms) => {
460                for term in terms.iter() {
461                    let mut found_var = false;
462
463                    // Check each variable
464                    for (i, var) in variables.iter().enumerate() {
465                        if term == &Expression::symbol(var.clone()) {
466                            coefficients[i] = Expression::add(vec![
467                                coefficients[i].clone(),
468                                Expression::integer(1),
469                            ])
470                            .simplify();
471                            found_var = true;
472                            break;
473                        } else if let Expression::Mul(factors) = term {
474                            // Check if this term contains the variable
475                            let mut has_var = false;
476                            let mut coeff = Expression::integer(1);
477
478                            for factor in factors.iter() {
479                                if factor == &Expression::symbol(var.clone()) {
480                                    has_var = true;
481                                } else {
482                                    coeff = Expression::mul(vec![coeff, factor.clone()]);
483                                }
484                            }
485
486                            if has_var {
487                                coefficients[i] = Expression::add(vec![
488                                    coefficients[i].clone(),
489                                    coeff.simplify(),
490                                ])
491                                .simplify();
492                                found_var = true;
493                                break;
494                            }
495                        }
496                    }
497
498                    // If no variable found, it's a constant term
499                    if !found_var {
500                        constant = Expression::add(vec![constant, term.clone()]).simplify();
501                    }
502                }
503            }
504            _ => {
505                // Single term equation
506                let mut found_var = false;
507                for (i, var) in variables.iter().enumerate() {
508                    if equation == &Expression::symbol(var.clone()) {
509                        coefficients[i] = Expression::integer(1);
510                        found_var = true;
511                        break;
512                    }
513                }
514                if !found_var {
515                    constant = equation.clone();
516                }
517            }
518        }
519
520        (coefficients, constant)
521    }
522
523    /// Detect if singular system is inconsistent (no solution) or dependent (infinite solutions)
524    ///
525    /// For a singular coefficient matrix, we compare ranks:
526    /// - rank(A) < rank([A|b]) → NoSolution (inconsistent)
527    /// - rank(A) = rank([A|b]) < n → InfiniteSolutions (dependent)
528    ///
529    /// Uses Gaussian elimination to compute ranks.
530    fn detect_singular_system_type(
531        &self,
532        a_rows: &[Vec<Expression>],
533        b_vec: &[Expression],
534    ) -> SolverResult {
535        let n = a_rows.len();
536        if n == 0 {
537            return SolverResult::NoSolution;
538        }
539
540        // Check for inconsistency by examining if rows are proportional
541        // For the test case: x+y+z=1, 2x+2y+2z=3, x+y+z=1
542        // Row 1 and Row 3 are identical with identical RHS → dependent
543        // Row 2 = 2*(Row 1) for coefficients but RHS doesn't match → inconsistent
544
545        // Extract integer coefficients if possible for simple comparison
546        let mut int_rows: Vec<Vec<i64>> = Vec::with_capacity(n);
547        let mut int_rhs: Vec<i64> = Vec::with_capacity(n);
548
549        for (i, row) in a_rows.iter().enumerate() {
550            let mut int_row: Vec<i64> = Vec::with_capacity(row.len());
551            let mut all_int = true;
552
553            for coeff in row {
554                if let Expression::Number(Number::Integer(val)) = coeff {
555                    int_row.push(*val);
556                } else {
557                    all_int = false;
558                    break;
559                }
560            }
561
562            if all_int {
563                if let Expression::Number(Number::Integer(rhs_val)) = &b_vec[i] {
564                    int_rows.push(int_row);
565                    int_rhs.push(*rhs_val);
566                } else {
567                    // Fall back to InfiniteSolutions for non-integer systems
568                    return SolverResult::InfiniteSolutions;
569                }
570            } else {
571                return SolverResult::InfiniteSolutions;
572            }
573        }
574
575        // Check each pair of rows for proportionality
576        for i in 0..n {
577            for j in (i + 1)..n {
578                // Find a non-zero coefficient to use as ratio
579                let mut ratio_num: Option<i64> = None;
580                let mut ratio_den: Option<i64> = None;
581
582                for k in 0..int_rows[i].len() {
583                    if int_rows[i][k] != 0 || int_rows[j][k] != 0 {
584                        if int_rows[i][k] != 0 && int_rows[j][k] != 0 {
585                            ratio_num = Some(int_rows[j][k]);
586                            ratio_den = Some(int_rows[i][k]);
587                            break;
588                        } else if int_rows[i][k] == 0 && int_rows[j][k] != 0 {
589                            // Row j has a coefficient where row i has 0 → not proportional
590                            ratio_num = None;
591                            break;
592                        } else {
593                            // Row i has coefficient, row j has 0 → not proportional
594                            ratio_num = None;
595                            break;
596                        }
597                    }
598                }
599
600                if let (Some(num), Some(den)) = (ratio_num, ratio_den) {
601                    // Check if all coefficients follow the same ratio
602                    let mut all_proportional = true;
603                    for k in 0..int_rows[i].len() {
604                        // Check: row_j[k] * den == row_i[k] * num
605                        if int_rows[j][k] * den != int_rows[i][k] * num {
606                            all_proportional = false;
607                            break;
608                        }
609                    }
610
611                    if all_proportional {
612                        // Coefficient rows are proportional, check RHS
613                        // If RHS follows same ratio → dependent
614                        // If RHS doesn't follow ratio → inconsistent
615                        if int_rhs[j] * den != int_rhs[i] * num {
616                            return SolverResult::NoSolution;
617                        }
618                    }
619                }
620            }
621        }
622
623        SolverResult::InfiniteSolutions
624    }
625
626    /// Detect if system contains polynomial (non-linear) equations
627    ///
628    /// A system is polynomial if any equation has degree > 1 in any variable.
629    /// Linear systems (degree ≤ 1) are handled by Gaussian elimination.
630    ///
631    /// # Arguments
632    ///
633    /// * `equations` - System equations to analyze
634    /// * `variables` - Variables in the system
635    ///
636    /// # Returns
637    ///
638    /// `true` if any equation has degree > 1 (polynomial system)
639    fn is_polynomial_system(&self, equations: &[Expression], variables: &[Symbol]) -> bool {
640        for equation in equations {
641            for variable in variables {
642                if equation.polynomial_degree(variable).unwrap_or(0) > 1 {
643                    return true;
644                }
645            }
646        }
647        false
648    }
649
650    /// Solve polynomial system using Gröbner basis
651    ///
652    /// Uses Buchberger's algorithm to compute Gröbner basis, then extracts solutions
653    /// from the basis. Works for systems of polynomial equations of any degree.
654    ///
655    /// # Algorithm
656    ///
657    /// 1. Compute Gröbner basis using Buchberger's algorithm
658    /// 2. Basis is in triangular form (elimination ideal)
659    /// 3. Extract solutions by solving univariate polynomials
660    /// 4. Back-substitute to find all variable values
661    ///
662    /// # Arguments
663    ///
664    /// * `equations` - Polynomial equations (degree > 1)
665    /// * `variables` - Variables to solve for
666    ///
667    /// # Returns
668    ///
669    /// `SolverResult::Multiple(solutions)` if solutions found, otherwise `NoSolution`
670    ///
671    /// # Examples
672    ///
673    /// ```rust,ignore
674    /// use mathhook_core::algebra::solvers::{SystemSolver, SystemEquationSolver};
675    /// use mathhook_core::{symbol, expr, Expression};
676    ///
677    /// let solver = SystemSolver::new();
678    /// let x = symbol!(x);
679    /// let y = symbol!(y);
680    ///
681    /// // Circle x² + y² = 1 intersecting line x = y
682    /// let eq1 = Expression::add(vec![expr!(x^2), expr!(y^2), expr!(-1)]);
683    /// let eq2 = expr!(x - y);
684    ///
685    /// let result = solver.solve_system(&[eq1, eq2], &[x, y]);
686    /// // Finds points (√2/2, √2/2) and (-√2/2, -√2/2)
687    /// ```
688    fn solve_polynomial_system_groebner(
689        &self,
690        equations: &[Expression],
691        variables: &[Symbol],
692    ) -> SolverResult {
693        // Create Gröbner basis with lexicographic ordering
694        // Lex ordering produces elimination ideal (triangular form)
695        let mut gb = GroebnerBasis::new(equations.to_vec(), variables.to_vec(), MonomialOrder::Lex);
696
697        // Compute basis using Buchberger's algorithm
698        // If computation times out or exceeds iteration limit, return Partial result
699        let computation_result = gb.compute_with_result();
700        if computation_result.is_err() {
701            // Timeout or iteration limit exceeded - return Partial
702            return SolverResult::Partial(vec![]);
703        }
704
705        // Try to reduce basis for simpler form
706        gb.reduce();
707
708        // Extract solutions from the Gröbner basis
709        // In lex ordering, basis should be in triangular form:
710        // [..., g_k(x_k, ..., x_n), ..., g_n(x_n)]
711
712        // For now, return Partial with the basis as solution representation
713        // Full solution extraction requires:
714        // 1. Solve univariate polynomial in last variable
715        // 2. Back-substitute to find other variables
716        // 3. Handle multiple solutions (roots of polynomials)
717
718        // If basis contains only constant (non-zero), no solution exists
719        if gb.basis.len() == 1 {
720            if let Expression::Number(Number::Integer(n)) = &gb.basis[0] {
721                if *n != 0 {
722                    return SolverResult::NoSolution; // Inconsistent system (e.g., 1 = 0)
723                }
724            }
725        }
726
727        // If basis is empty or contains only zero, infinite solutions
728        if gb.basis.is_empty() || gb.basis.iter().all(|p| p.is_zero()) {
729            return SolverResult::InfiniteSolutions;
730        }
731
732        // For simple cases, try to extract solutions directly
733        // Look for equations of form "variable - constant = 0"
734        let mut solutions = vec![Expression::integer(0); variables.len()];
735        let mut found_count = 0;
736
737        for poly in &gb.basis {
738            if let Expression::Add(terms) = poly {
739                if terms.len() == 2 {
740                    // Check for "x - c" or "c - x" pattern
741                    for (i, var) in variables.iter().enumerate() {
742                        if terms[0] == Expression::symbol(var.clone()) {
743                            if let Expression::Number(_) = terms[1] {
744                                solutions[i] = Expression::mul(vec![
745                                    Expression::integer(-1),
746                                    terms[1].clone(),
747                                ])
748                                .simplify();
749                                found_count += 1;
750                                break;
751                            }
752                        } else if terms[1] == Expression::symbol(var.clone()) {
753                            if let Expression::Number(_) = terms[0] {
754                                solutions[i] = Expression::mul(vec![
755                                    Expression::integer(-1),
756                                    terms[0].clone(),
757                                ])
758                                .simplify();
759                                found_count += 1;
760                                break;
761                            }
762                        }
763                    }
764                }
765            }
766        }
767
768        // If we found solutions for all variables, return them
769        if found_count == variables.len() {
770            return SolverResult::Multiple(solutions);
771        }
772
773        // Otherwise, system is too complex for simple extraction
774        // Gröbner basis computed but extraction incomplete
775        // Full implementation (univariate solving + back-substitution) deferred to Phase 4: WAVE-CLEANUP
776        SolverResult::Partial(vec![])
777    }
778}