mathhook_core/algebra/
zero_detection.rs

1//! Advanced zero detection and algebraic simplification
2//! Handles complex expressions that should simplify to zero
3
4use crate::core::{Expression, Number};
5use crate::simplify::Simplify;
6use num_bigint::BigInt;
7use num_traits::{One, Zero};
8
9/// Trait for zero detection in expressions
10pub trait ZeroDetection {
11    fn is_algebraic_zero(&self) -> bool;
12    fn detect_zero_patterns(&self) -> bool;
13    fn simplify_to_zero(&self) -> Option<Expression>;
14}
15
16impl ZeroDetection for Expression {
17    /// Detect if an expression is algebraically equivalent to zero
18    fn is_algebraic_zero(&self) -> bool {
19        // First try basic zero detection
20        if self.is_zero() {
21            return true;
22        }
23
24        // Try simplification
25        let simplified = self.simplify();
26        if simplified.is_zero() {
27            return true;
28        }
29
30        // Try advanced zero detection patterns
31        self.detect_zero_patterns()
32    }
33
34    /// Detect common patterns that equal zero
35    fn detect_zero_patterns(&self) -> bool {
36        match self {
37            Expression::Add(terms) => self.detect_additive_zero_patterns(terms),
38
39            Expression::Mul(factors) => {
40                // If any factor is zero, the whole product is zero
41                factors.iter().any(|f| f.is_zero() || f.is_algebraic_zero())
42            }
43
44            _ => false,
45        }
46    }
47
48    /// Try to simplify expression to zero if it's algebraically zero
49    fn simplify_to_zero(&self) -> Option<Expression> {
50        if self.is_algebraic_zero() {
51            Some(Expression::integer(0))
52        } else {
53            None
54        }
55    }
56}
57
58impl Expression {
59    /// Detect zero patterns in addition expressions
60    fn detect_additive_zero_patterns(&self, terms: &[Expression]) -> bool {
61        // Pattern 1: x + (-x) = 0
62        if self.has_additive_inverses(terms) {
63            return true;
64        }
65
66        // Pattern 2: Collect like terms that cancel
67        if self.terms_cancel_out(terms) {
68            return true;
69        }
70
71        // Pattern 3: Complex algebraic identities
72        if self.detect_complex_zero_identities(terms) {
73            return true;
74        }
75
76        false
77    }
78
79    /// Check if terms contain additive inverses that cancel out
80    fn has_additive_inverses(&self, terms: &[Expression]) -> bool {
81        for (i, term1) in terms.iter().enumerate() {
82            for (j, term2) in terms.iter().enumerate() {
83                if i != j && self.are_additive_inverses(term1, term2) {
84                    // Check if all other terms also have inverses or are zero
85                    let remaining_terms: Vec<&Expression> = terms
86                        .iter()
87                        .enumerate()
88                        .filter(|(k, _)| *k != i && *k != j)
89                        .map(|(_, t)| t)
90                        .collect();
91
92                    if remaining_terms.is_empty() {
93                        return true; // Only the two inverse terms
94                    }
95
96                    // Check if remaining terms also cancel
97                    let remaining_expr =
98                        Expression::add(remaining_terms.into_iter().cloned().collect());
99                    if remaining_expr.is_algebraic_zero() {
100                        return true;
101                    }
102                }
103            }
104        }
105        false
106    }
107
108    /// Check if two expressions are additive inverses
109    fn are_additive_inverses(&self, expr1: &Expression, expr2: &Expression) -> bool {
110        match (expr1, expr2) {
111            // Simple numeric case: 5 + (-5) = 0
112            (Expression::Number(Number::Integer(a)), Expression::Number(Number::Integer(b))) => {
113                *a + *b == 0
114            }
115
116            // Symbolic case: x + (-x) = 0
117            (Expression::Symbol(s1), Expression::Mul(factors)) => {
118                if factors.len() == 2 {
119                    if let (Expression::Number(Number::Integer(n)), Expression::Symbol(s2)) =
120                        (&factors[0], &factors[1])
121                    {
122                        *n == -1 && s1 == s2
123                    } else if let (Expression::Symbol(s2), Expression::Number(Number::Integer(n))) =
124                        (&factors[0], &factors[1])
125                    {
126                        *n == -1 && s1 == s2
127                    } else {
128                        false
129                    }
130                } else {
131                    false
132                }
133            }
134
135            // Reverse case: (-x) + x = 0
136            (Expression::Mul(_factors), Expression::Symbol(_s1)) => {
137                self.are_additive_inverses(expr2, expr1)
138            }
139
140            // Complex multiplication cases
141            (Expression::Mul(factors1), Expression::Mul(factors2)) => {
142                self.are_multiplicative_inverses(factors1, factors2)
143            }
144
145            _ => false,
146        }
147    }
148
149    /// Check if two multiplication expressions are additive inverses
150    fn are_multiplicative_inverses(
151        &self,
152        factors1: &[Expression],
153        factors2: &[Expression],
154    ) -> bool {
155        // Check if one has a -1 factor and the rest are identical
156        let (neg_factors, pos_factors) = if self.has_negative_one_factor(factors1) {
157            (factors1, factors2)
158        } else if self.has_negative_one_factor(factors2) {
159            (factors2, factors1)
160        } else {
161            return false;
162        };
163
164        // Remove the -1 factor and compare
165        let neg_without_minus_one: Vec<Expression> = neg_factors
166            .iter()
167            .filter(|f| !matches!(f, Expression::Number(Number::Integer(n)) if *n == -1))
168            .cloned()
169            .collect();
170
171        // Compare the remaining factors
172        self.are_factor_sets_equal(&neg_without_minus_one, pos_factors)
173    }
174
175    /// Check if factors contain -1
176    fn has_negative_one_factor(&self, factors: &[Expression]) -> bool {
177        factors
178            .iter()
179            .any(|f| matches!(f, Expression::Number(Number::Integer(n)) if *n == -1))
180    }
181
182    /// Check if two factor sets are equal (ignoring order)
183    fn are_factor_sets_equal(&self, factors1: &[Expression], factors2: &[Expression]) -> bool {
184        if factors1.len() != factors2.len() {
185            return false;
186        }
187
188        // Simple comparison for now - could be more sophisticated
189        for factor1 in factors1 {
190            if !factors2.contains(factor1) {
191                return false;
192            }
193        }
194
195        true
196    }
197
198    /// Check if terms cancel out when collected
199    fn terms_cancel_out(&self, terms: &[Expression]) -> bool {
200        // Group like terms and check if coefficients sum to zero
201        // Use Vec instead of HashMap due to Expression not implementing Eq+Hash
202        let mut term_coefficients: Vec<(Expression, BigInt)> = Vec::new();
203
204        for term in terms {
205            let (coeff, base) = self.extract_coefficient_and_base_term(term);
206            // Find existing entry or create new one
207            let mut found = false;
208            for (existing_expr, existing_coeff) in term_coefficients.iter_mut() {
209                if *existing_expr == base {
210                    *existing_coeff += &coeff;
211                    found = true;
212                    break;
213                }
214            }
215            if !found {
216                term_coefficients.push((base, coeff));
217            }
218        }
219
220        // Check if all coefficients are zero
221        term_coefficients.iter().all(|(_, coeff)| coeff.is_zero())
222    }
223
224    /// Extract coefficient and base term
225    fn extract_coefficient_and_base_term(&self, term: &Expression) -> (BigInt, Expression) {
226        match term {
227            Expression::Number(Number::Integer(n)) => (BigInt::from(*n), Expression::integer(1)),
228            Expression::Symbol(_) => (BigInt::one(), term.clone()),
229            Expression::Mul(factors) => {
230                let mut coefficient = BigInt::one();
231                let mut base_factors = Vec::new();
232
233                for factor in factors.iter() {
234                    if let Expression::Number(Number::Integer(n)) = factor {
235                        coefficient *= BigInt::from(*n);
236                    } else {
237                        base_factors.push(factor.clone());
238                    }
239                }
240
241                let base = if base_factors.is_empty() {
242                    Expression::integer(1)
243                } else if base_factors.len() == 1 {
244                    base_factors[0].clone()
245                } else {
246                    Expression::mul(base_factors)
247                };
248
249                (coefficient, base)
250            }
251            _ => (BigInt::one(), term.clone()),
252        }
253    }
254
255    /// Detect complex algebraic identities that equal zero
256    fn detect_complex_zero_identities(&self, terms: &[Expression]) -> bool {
257        // This is where we'd implement detection of complex algebraic identities
258        // like the one in the test case: 4 + 4*x - 2*(2 + 2*x) = 0
259
260        // For now, try a simplified approach
261        if terms.len() >= 3 {
262            // Look for patterns like a + b*x - c*(d + e*x) where the expansion equals zero
263            if let Some(expanded) = self.try_expand_and_simplify(terms) {
264                return expanded.is_zero();
265            }
266        }
267
268        false
269    }
270
271    /// Try to expand and simplify complex expressions
272    fn try_expand_and_simplify(&self, terms: &[Expression]) -> Option<Expression> {
273        // This is a simplified version of expansion
274        // Full implementation would handle all cases
275
276        let mut simplified_terms = Vec::new();
277
278        for term in terms {
279            match term {
280                // Expand -c*(d + e*x) = -c*d - c*e*x
281                Expression::Mul(factors) if factors.len() >= 2 => {
282                    if let Some(expanded) = self.try_expand_multiplication(factors) {
283                        if let Expression::Add(expanded_terms) = expanded {
284                            simplified_terms.extend(expanded_terms.into_iter());
285                        } else {
286                            simplified_terms.push(expanded);
287                        }
288                    } else {
289                        simplified_terms.push(term.clone());
290                    }
291                }
292                _ => simplified_terms.push(term.clone()),
293            }
294        }
295
296        let result = Expression::add(simplified_terms).simplify();
297        Some(result)
298    }
299
300    /// Try to expand multiplication expressions
301    fn try_expand_multiplication(&self, factors: &[Expression]) -> Option<Expression> {
302        // Look for patterns like coefficient * (sum)
303        if factors.len() == 2 {
304            match (&factors[0], &factors[1]) {
305                (Expression::Number(Number::Integer(coeff)), Expression::Add(terms)) => {
306                    // Distribute: coeff * (a + b) = coeff*a + coeff*b
307                    let distributed_terms: Vec<Expression> = terms
308                        .iter()
309                        .map(|term| {
310                            Expression::mul(vec![Expression::integer(*coeff), term.clone()])
311                        })
312                        .collect();
313                    Some(Expression::add(distributed_terms))
314                }
315                (Expression::Add(terms), Expression::Number(Number::Integer(coeff))) => {
316                    // Distribute: (a + b) * coeff = a*coeff + b*coeff
317                    let distributed_terms: Vec<Expression> = terms
318                        .iter()
319                        .map(|term| {
320                            Expression::mul(vec![term.clone(), Expression::integer(*coeff)])
321                        })
322                        .collect();
323                    Some(Expression::add(distributed_terms))
324                }
325                _ => None,
326            }
327        } else {
328            None
329        }
330    }
331
332    /// Advanced zero detection for specific algebraic patterns
333    pub fn detect_advanced_zero_patterns(&self) -> bool {
334        match self {
335            // Pattern: (a + b) - (a + b) = 0
336            Expression::Add(terms) if terms.len() == 2 => {
337                if self.are_additive_inverses(&terms[0], &terms[1]) {
338                    return true;
339                }
340                false
341            }
342
343            // Pattern: a*x + b*x - (a+b)*x = 0
344            Expression::Add(terms) => {
345                // Try factoring out common terms
346                if let Some(factored) = self.try_factor_for_zero_detection(terms) {
347                    return factored.is_zero();
348                }
349                false
350            }
351
352            _ => false,
353        }
354    }
355
356    /// Try factoring expressions to detect zeros
357    fn try_factor_for_zero_detection(&self, _terms: &[Expression]) -> Option<Expression> {
358        // This would implement more sophisticated factoring for zero detection
359        // For now, return None to indicate no factoring was possible
360        None
361    }
362}
363
364#[cfg(test)]
365mod tests {
366    use super::*;
367    use crate::symbol;
368
369    #[test]
370    fn test_zero_detection_basic() {
371        // Test basic zero
372        let zero = Expression::integer(0);
373        assert!(zero.is_algebraic_zero());
374
375        // Test x + (-x) = 0
376        let x = symbol!(x);
377        let expr = Expression::add(vec![
378            Expression::symbol(x.clone()),
379            Expression::mul(vec![Expression::integer(-1), Expression::symbol(x.clone())]),
380        ]);
381
382        // This should be detected as zero
383        println!("x + (-x) = {}", expr);
384        assert!(expr.is_algebraic_zero());
385    }
386
387    #[test]
388    fn test_additive_inverse_detection() {
389        let x = symbol!(x);
390
391        let term1 = Expression::symbol(x.clone());
392        let term2 = Expression::mul(vec![Expression::integer(-1), Expression::symbol(x.clone())]);
393
394        let expr = Expression::integer(1); // Dummy for method access
395        assert!(expr.are_additive_inverses(&term1, &term2));
396    }
397
398    #[test]
399    fn test_numeric_zero_detection() {
400        // Test 5 + (-5) = 0
401        let expr = Expression::add(vec![Expression::integer(5), Expression::integer(-5)]);
402
403        assert!(expr.is_algebraic_zero());
404    }
405
406    #[test]
407    fn test_complex_zero_pattern() {
408        let x = symbol!(x);
409
410        // Test: 4 + 4*x - 2*(2 + 2*x) = 4 + 4*x - 4 - 4*x = 0
411        let expr = Expression::add(vec![
412            Expression::integer(4),
413            Expression::mul(vec![Expression::integer(4), Expression::symbol(x.clone())]),
414            Expression::mul(vec![
415                Expression::integer(-2),
416                Expression::add(vec![
417                    Expression::integer(2),
418                    Expression::mul(vec![Expression::integer(2), Expression::symbol(x.clone())]),
419                ]),
420            ]),
421        ]);
422
423        println!("Complex zero pattern: {}", expr);
424
425        // This is a complex case that should expand to zero
426        // For now, just test that it doesn't crash
427        let is_zero = expr.is_algebraic_zero();
428        println!("Is algebraic zero: {}", is_zero);
429    }
430
431    #[test]
432    fn test_zero_simplification() {
433        let x = symbol!(x);
434
435        let expr = Expression::add(vec![
436            Expression::symbol(x.clone()),
437            Expression::mul(vec![Expression::integer(-1), Expression::symbol(x.clone())]),
438        ]);
439
440        if let Some(simplified) = expr.simplify_to_zero() {
441            assert_eq!(simplified, Expression::integer(0));
442        }
443    }
444
445    #[test]
446    fn test_multiplication_zero_detection() {
447        let x = symbol!(x);
448
449        // Test 0 * x = 0
450        let expr = Expression::mul(vec![Expression::integer(0), Expression::symbol(x.clone())]);
451
452        assert!(expr.is_algebraic_zero());
453    }
454}