logo
#[repr(C)]
pub struct Euler<A> { pub x: A, pub y: A, pub z: A, }
Expand description

A set of Euler angles representing a rotation in three-dimensional space.

This type is marked as #[repr(C)].

The axis rotation sequence is XYZ. That is, the rotation is first around the X axis, then the Y axis, and lastly the Z axis (using intrinsic rotations). Since all three rotation axes are used, the angles are Tait–Bryan angles rather than proper Euler angles.

Ranges

  • x: [-pi, pi]
  • y: [-pi/2, pi/2]
  • z: [-pi, pi]

Defining rotations using Euler angles

Note that while Euler angles are intuitive to define, they are prone to gimbal lock and are challenging to interpolate between. Instead we recommend that you convert them to a more robust representation, such as a quaternion or a rotation matrix. To this end, From<Euler<A>> conversions are provided for the following types:

For example, to define a quaternion that applies the following:

  1. a 90° rotation around the x axis
  2. a 45° rotation around the y axis
  3. a 15° rotation around the z axis

you can use the following code:

use cgmath::{Deg, Euler, Quaternion};

let rotation = Quaternion::from(Euler {
    x: Deg(90.0),
    y: Deg(45.0),
    z: Deg(15.0),
});

Fields

x: A

The angle to apply around the x axis. Also known at the pitch.

y: A

The angle to apply around the y axis. Also known at the yaw.

z: A

The angle to apply around the z axis. Also known at the roll.

Implementations

Construct a set of euler angles.

Arguments
  • x - The angle to apply around the x axis. Also known at the pitch.
  • y - The angle to apply around the y axis. Also known at the yaw.
  • z - The angle to apply around the z axis. Also known at the roll.

Trait Implementations

Used for specifying relative comparisons.

The default tolerance to use when testing values that are close together. Read more

A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more

The inverse of AbsDiffEq::abs_diff_eq.

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Create a three-dimensional rotation matrix from a set of euler angles.

Converts to this type from the input type.

Converts to this type from the input type.

Converts to this type from the input type.

Converts to this type from the input type.

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

The default relative tolerance for testing values that are far-apart. Read more

A test for equality that uses a relative comparison if the values are far apart.

The inverse of RelativeEq::relative_eq.

The default ULPs to tolerate when testing values that are far-apart. Read more

A test for equality that uses units in the last place (ULP) if the values are far apart.

The inverse of UlpsEq::ulps_eq.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

Checks if self is actually part of its subset T (and can be converted to it).

Use with care! Same as self.to_subset but without any property checks. Always succeeds.

The inclusion map: converts self to the equivalent element of its superset.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.