1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
//! Binning the iterator output into fixed size intervals if the output
//! is of the form `(I64Interval, T)`. Only bins with non-empty intersections
//! with those intervals will be returned.

use crate::{
    interval::{traits::Interval, I64Interval},
    iter::CommonRefinementZip,
    set::traits::{Finite, Intersect},
};
use num::{FromPrimitive, Num};
use std::cmp::Ordering;

/// The value of the associated with `Min` and `Max` are the initial min and max
/// values.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum AggregateOp {
    Average,
    Max,
    Min,
    Sum,
}

pub trait IntoBinnedIntervalIter<V>
where
    Self: Iterator + Sized,
    V: Copy + Num + FromPrimitive + PartialOrd, {
    fn into_binned_interval_iter(
        self,
        bin_size: i64,
        aggregate_op: AggregateOp,
        interval_value_extractor: Box<
            dyn Fn(<Self as Iterator>::Item) -> (I64Interval, V),
        >,
    ) -> BinnedIntervalIter<Self, V>;
}

impl<I, V> IntoBinnedIntervalIter<V> for I
where
    I: Iterator,
    V: Copy + Num + FromPrimitive + PartialOrd,
{
    fn into_binned_interval_iter(
        self,
        bin_size: i64,
        aggregate_op: AggregateOp,
        interval_value_extractor: Box<
            dyn Fn(<I as Iterator>::Item) -> (I64Interval, V),
        >,
    ) -> BinnedIntervalIter<Self, V> {
        BinnedIntervalIter::new(
            self,
            bin_size,
            aggregate_op,
            interval_value_extractor,
        )
    }
}

/// With imaginary bins of size `bin_size` and aligned at `0`,
/// returns a value for each bin that intersects one or more intervals from
/// the original iterator `iter`, where the value at each intersection is
/// obtained by applying the operation specified by the `aggregate_op` for
/// all the overlapping intervals and their associated values, where the value
/// of each overlapping interval is multiplied by the length of the interval if
/// the `aggregate_op` is `Sum`.
///
/// # Panics
/// The iterator will panic if the intervals returned by the original `iter` are
/// not disjoint or increasing.
///
/// # Example
/// ```
/// use math::{
///     interval::I64Interval,
///     iter::binned_interval_iter::{AggregateOp, IntoBinnedIntervalIter},
///     partition::integer_interval_map::IntegerIntervalMap,
/// };
///
/// let bin_size = 5;
/// let mut interval_map = IntegerIntervalMap::new();
/// interval_map.aggregate(I64Interval::new(-1, 1), 2);
/// interval_map.aggregate(I64Interval::new(14, 17), -1);
///
/// // interval coordinates                       | value
/// // -1 | 0 1  |   ...   |        |             | +2
/// //    |      |   ...   |     14 | 15 16 17    | -1
/// //---------------------------------------------
/// // 0.4|| 0.8 ||  ...   || -0.2 || -0.6        | bin average
/// //  2 || 4   ||  ...   || -1   || -3          | bin sum
/// //  2 || 2   ||  ...   || -1   || -1          | bin max
/// //  2 || 2   ||  ...   || -1   || -1          | bin min
/// assert_eq!(
///     interval_map
///         .iter()
///         .into_binned_interval_iter(
///             bin_size,
///             AggregateOp::Average,
///             Box::new(|(&interval, &val)| (interval, val as f64))
///         )
///         .collect::<Vec<(I64Interval, f64)>>(),
///     vec![
///         (I64Interval::new(-5, -1), 0.4),
///         (I64Interval::new(0, 4), 0.8),
///         (I64Interval::new(10, 14), -0.2),
///         (I64Interval::new(15, 19), -0.6),
///     ]
/// );
/// assert_eq!(
///     interval_map
///         .iter()
///         .into_binned_interval_iter(
///             bin_size,
///             AggregateOp::Sum,
///             Box::new(|(&interval, &val)| (interval, val))
///         )
///         .collect::<Vec<(I64Interval, i32)>>(),
///     vec![
///         (I64Interval::new(-5, -1), 2),
///         (I64Interval::new(0, 4), 4),
///         (I64Interval::new(10, 14), -1),
///         (I64Interval::new(15, 19), -3),
///     ]
/// );
/// assert_eq!(
///     interval_map
///         .iter()
///         .into_binned_interval_iter(
///             bin_size,
///             AggregateOp::Max,
///             Box::new(|(&interval, &val)| (interval, val))
///         )
///         .collect::<Vec<(I64Interval, i32)>>(),
///     vec![
///         (I64Interval::new(-5, -1), 2),
///         (I64Interval::new(0, 4), 2),
///         (I64Interval::new(10, 14), -1),
///         (I64Interval::new(15, 19), -1),
///     ]
/// );
/// assert_eq!(
///     interval_map
///         .iter()
///         .into_binned_interval_iter(
///             bin_size,
///             AggregateOp::Min,
///             Box::new(|(&interval, &val)| (interval, val))
///         )
///         .collect::<Vec<(I64Interval, i32)>>(),
///     vec![
///         (I64Interval::new(-5, -1), 2),
///         (I64Interval::new(0, 4), 2),
///         (I64Interval::new(10, 14), -1),
///         (I64Interval::new(15, 19), -1),
///     ]
/// );
/// ```
pub struct BinnedIntervalIter<I, V>
where
    I: Iterator,
    V: Copy + Num + FromPrimitive + PartialOrd, {
    iter: I,
    bin_size: i64,
    aggregate_op: AggregateOp,
    iter_item_interval_value_extractor:
        Box<dyn Fn(<I as Iterator>::Item) -> (I64Interval, V)>,
    current_interval_val: Option<(I64Interval, V)>,
    current_bin: Option<I64Interval>,
}

impl<I, V> BinnedIntervalIter<I, V>
where
    I: Iterator,
    V: Copy + Num + FromPrimitive + PartialOrd,
{
    pub fn new(
        mut iter: I,
        bin_size: i64,
        aggregate_op: AggregateOp,
        iter_item_interval_value_extractor: Box<
            dyn Fn(<I as Iterator>::Item) -> (I64Interval, V),
        >,
    ) -> Self {
        assert!(bin_size >= 1, "bin_size must be at least 1");
        let current_interval_val = iter
            .next()
            .map(|item| iter_item_interval_value_extractor(item));
        BinnedIntervalIter {
            iter,
            bin_size,
            aggregate_op,
            iter_item_interval_value_extractor,
            current_interval_val,
            current_bin: None,
        }
    }
}

impl<I, V> Iterator for BinnedIntervalIter<I, V>
where
    I: Iterator,
    V: Copy + Num + FromPrimitive + PartialOrd,
{
    type Item = (I64Interval, V);

    /// After every iteration, `self.current_bin` can be
    /// * `None`: indicating that the current interval has not been processed at
    ///   all
    /// * `Some`: indicating the last used bin
    ///
    /// and `self.current_interval_val` can be
    /// * `None`: indicating that all the intervals have been processed
    /// * `Some`: indicating that the current interval still has unprocessed
    ///   elements
    ///
    /// # panics: if the intervals returned by the original `iter` are not
    /// disjoint or increasing.
    fn next(&mut self) -> Option<Self::Item> {
        let current_interval = &self.current_interval_val;
        match current_interval {
            None => None,
            Some((mut interval, mut val)) => {
                let mut aggregate: Option<V> = None;

                let interval_start = interval.get_start();

                // the start of the first bin that overlaps the interval
                let first_overlap_bin_start = if interval_start >= 0 {
                    (interval_start / self.bin_size) * self.bin_size
                } else {
                    // take the ceiling towards the negative direction
                    ((interval_start - (self.bin_size - 1)) / self.bin_size)
                        * self.bin_size
                };

                let bin_start = match self.current_bin {
                    None => {
                        // have not processed the current interval at all yet
                        first_overlap_bin_start
                    }
                    Some(old_bin) => {
                        if old_bin.get_end() < interval_start {
                            first_overlap_bin_start
                        } else {
                            old_bin.get_end() + 1
                        }
                    }
                };
                let bin_end_inclusive = bin_start + self.bin_size - 1;
                self.current_bin =
                    Some(I64Interval::new(bin_start, bin_end_inclusive));
                let bin_size_denominator = V::from_i64(self.bin_size).unwrap();

                loop {
                    aggregate = match self.aggregate_op {
                        AggregateOp::Max => Some(aggregate.map_or_else(
                            || val,
                            |agg| match agg.partial_cmp(&val).unwrap() {
                                Ordering::Less => val,
                                _ => agg,
                            },
                        )),
                        AggregateOp::Min => Some(aggregate.map_or_else(
                            || val,
                            |agg| match agg.partial_cmp(&val).unwrap() {
                                Ordering::Greater => val,
                                _ => agg,
                            },
                        )),
                        AggregateOp::Sum => Some(
                            aggregate.unwrap_or(V::zero())
                                + val
                                    * V::from_usize(
                                        self.current_bin
                                            .unwrap()
                                            .intersect(&interval)
                                            .map_or_else(|| 0, |i| i.size()),
                                    )
                                    .unwrap(),
                        ),
                        AggregateOp::Average => Some(
                            aggregate.unwrap_or(V::zero())
                                + val
                                    * (V::from_usize(
                                        self.current_bin
                                            .unwrap()
                                            .intersect(&interval)
                                            .map_or_else(|| 0, |i| i.size()),
                                    )
                                    .unwrap()
                                        / bin_size_denominator),
                        ),
                    };

                    let interval_end_inclusive = interval.get_end();

                    // Either the interval is contained in the bin
                    // or it extends rightwards beyond the bin.
                    if interval_end_inclusive <= bin_end_inclusive {
                        // If it is contained in the bin, we will get the next
                        // interval.
                        self.current_interval_val =
                            self.iter.next().map(|item| {
                                (self.iter_item_interval_value_extractor)(item)
                            });
                        match self.current_interval_val {
                            None => {
                                break;
                            }
                            Some((i, v)) => {
                                assert!(
                                    interval_end_inclusive < i.get_start(),
                                    "previous interval end ({}) >= next interval start ({})",
                                    interval_end_inclusive,
                                    i.get_start()
                                );
                                interval = i;
                                val = v;
                                if interval.get_start() > bin_end_inclusive {
                                    break;
                                }
                            }
                        };
                    } else {
                        // Otherwise, the current bin has received all the
                        // information
                        // from the intersecting intervals and is ready to be
                        // returned.
                        break;
                    }
                }
                Some((self.current_bin.unwrap(), aggregate.unwrap()))
            }
        }
    }
}

type IntType = i64;

impl<I, V> CommonRefinementZip<IntType, (I64Interval, V), I64Interval, V>
    for BinnedIntervalIter<I, V>
where
    I: Iterator,
    V: Copy + Num + FromPrimitive + PartialOrd,
{
    fn get_interval_value_extractor(
        &self,
    ) -> Box<dyn Fn(<Self as Iterator>::Item) -> (I64Interval, V)> {
        Box::new(|item| (item.0, item.1))
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        interval::I64Interval,
        iter::{
            binned_interval_iter::{AggregateOp, IntoBinnedIntervalIter},
            CommonRefinementZip,
        },
        partition::integer_interval_map::IntegerIntervalMap,
    };

    #[test]
    fn test_binned_interval_iter() {
        let bin_size = 3;
        let mut interval_map = IntegerIntervalMap::new();
        interval_map.aggregate(I64Interval::new(-1, 4), 2);
        interval_map.aggregate(I64Interval::new(6, 8), 4);
        interval_map.aggregate(I64Interval::new(4, 7), 1);

        // interval coordinates           | value
        // -1 | 0 1 2 | 3 4   |           | +2
        //    |       |       | 6 7 8     | +4
        //    |       |   4 5 | 6 7       | +1
        //---------------------------------
        //  2 | 2 2 2 | 2 3 1 | 5 5 4 |   | superposed values
        //  2 || 6    || 6    || 14   ||  | bin sum
        //  2 || 2    || 3    || 5    ||  | bin max
        //  2 || 2    || 1    || 4    ||  | bin min

        macro_rules! get_actual {
            ($op:expr) => {
                interval_map
                    .iter()
                    .into_binned_interval_iter(
                        bin_size,
                        $op,
                        Box::new(|(&interval, &val)| (interval, val)),
                    )
                    .collect::<Vec<(I64Interval, i32)>>()
            };
        }

        assert_eq!(get_actual!(AggregateOp::Sum), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 6),
            (I64Interval::new(3, 5), 6),
            (I64Interval::new(6, 8), 14),
        ]);
        assert_eq!(get_actual!(AggregateOp::Max), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 2),
            (I64Interval::new(3, 5), 3),
            (I64Interval::new(6, 8), 5),
        ]);
        assert_eq!(get_actual!(AggregateOp::Min), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 2),
            (I64Interval::new(3, 5), 1),
            (I64Interval::new(6, 8), 4),
        ]);

        interval_map.aggregate(I64Interval::new(2, 4), -3);
        interval_map.aggregate(I64Interval::new(14, 16), -2);

        // interval coordinates           | value
        // -1 | 0 1 2 | 3 4   |           | +2
        //    |       |       | 6 7 8     | +4
        //    |       |   4 5 | 6 7       | +1
        //    |     2 | 3 4   |           | -3
        //---------------------------------
        //  2 | 2 2 -1|-1 0 1 | 5 5 4 |   | superposed values
        //  2 || 3    || 0    || 14   ||  | bin sum
        //  2 || 2    || 1    || 5    ||  | bin max
        //  2 || -1   || -1   || 4    ||  | bin min
        assert_eq!(get_actual!(AggregateOp::Sum), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 3),
            (I64Interval::new(3, 5), 0),
            (I64Interval::new(6, 8), 14),
            (I64Interval::new(12, 14), -2),
            (I64Interval::new(15, 17), -4),
        ]);
        assert_eq!(get_actual!(AggregateOp::Max), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 2),
            (I64Interval::new(3, 5), 1),
            (I64Interval::new(6, 8), 5),
            (I64Interval::new(12, 14), -2),
            (I64Interval::new(15, 17), -2),
        ]);
        assert_eq!(get_actual!(AggregateOp::Min), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), -1),
            (I64Interval::new(3, 5), -1),
            (I64Interval::new(6, 8), 4),
            (I64Interval::new(12, 14), -2),
            (I64Interval::new(15, 17), -2),
        ]);
    }

    #[test]
    fn test_common_refinement_zip() {
        let bin_size = 3;
        let mut map1 = IntegerIntervalMap::new();
        map1.aggregate(I64Interval::new(-1, 4), 2);
        map1.aggregate(I64Interval::new(6, 8), 4);
        map1.aggregate(I64Interval::new(4, 7), 1);

        // interval coordinates           | value
        // -1 | 0 1 2 | 3 4   |           | +2
        //    |       |       | 6 7 8     | +4
        //    |       |   4 5 | 6 7       | +1
        //---------------------------------
        //  2 | 2 2 2 | 2 3 1 | 5 5 4 |   | superposed values
        //  2 || 6    || 6    || 14   ||  | bin sum

        let mut map2 = IntegerIntervalMap::new();
        map2.aggregate(I64Interval::new(1, 2), -2);
        map2.aggregate(I64Interval::new(6, 8), 9);
        // interval coordinates            | value
        // |  1   2 |       |              | -2
        // |        |       |  6   7   8   | +9
        //---------------------------------
        // | -2  -2 |       |  9   9   9   | superposed values
        // || -4    ||      || 27          | bin sum

        assert_eq!(
            map2.iter()
                .into_binned_interval_iter(
                    bin_size,
                    AggregateOp::Sum,
                    Box::new(|(&interval, &val)| (interval, val))
                )
                .collect::<Vec<(I64Interval, i32)>>(),
            vec![(I64Interval::new(0, 2), -4), (I64Interval::new(6, 8), 27)]
        );

        let actual: Vec<(I64Interval, Vec<Option<i32>>)> = map1
            .iter()
            .into_binned_interval_iter(
                bin_size,
                AggregateOp::Sum,
                Box::new(|(&interval, &val)| (interval, val)),
            )
            .common_refinement_zip(map2.iter().into_binned_interval_iter(
                bin_size,
                AggregateOp::Sum,
                Box::new(|(&interval, &val)| (interval, val)),
            ))
            .collect();

        let expected = vec![
            (I64Interval::new(-3, -1), vec![Some(2), None]),
            (I64Interval::new(0, 2), vec![Some(6), Some(-4)]),
            (I64Interval::new(3, 5), vec![Some(6), None]),
            (I64Interval::new(6, 8), vec![Some(14), Some(27)]),
        ];
        assert_eq!(actual, expected);
    }
}