1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use crate::implementation::{
    debug_assert_graph_has_no_consecutive_dummy_edges, make_graph_eulerian_with_breaking_edges,
    MatchtigEdgeData, RelaxedAtomicBoolVec,
};
use crate::TigAlgorithm;
use genome_graph::bigraph::algo::eulerian::{
    compute_eulerian_superfluous_out_biedges,
    compute_minimum_bidirected_eulerian_cycle_decomposition, decomposes_into_eulerian_bicycles,
    find_non_eulerian_binodes_with_differences,
};
use genome_graph::bigraph::interface::dynamic_bigraph::DynamicEdgeCentricBigraph;
use genome_graph::bigraph::interface::BidirectedData;
use genome_graph::bigraph::traitgraph::index::{GraphIndex, OptionalGraphIndex};
use genome_graph::bigraph::traitgraph::interface::GraphBase;
use genome_graph::bigraph::traitgraph::walks::{EdgeWalk, VecEdgeWalk};
use log::{error, info, warn};
use std::marker::PhantomData;

/// The eulertigs algorithm.
#[derive(Default)]
pub struct EulertigAlgorithm<SequenceHandle> {
    _phantom_data: PhantomData<SequenceHandle>,
}

impl<Graph: GraphBase, SequenceHandle: Default + Clone> TigAlgorithm<Graph>
    for EulertigAlgorithm<SequenceHandle>
where
    Graph: DynamicEdgeCentricBigraph,
    Graph::EdgeData: BidirectedData + Eq + Clone + MatchtigEdgeData<SequenceHandle>,
{
    type Configuration = EulertigAlgorithmConfiguration;

    fn compute_tigs(
        graph: &mut Graph,
        configuration: &Self::Configuration,
    ) -> Vec<VecEdgeWalk<Graph>> {
        compute_eulertigs(graph, configuration)
    }
}

/// The options for the eulertigs algorithm.
pub struct EulertigAlgorithmConfiguration {
    /// The k used to build the de Bruijn graph.
    pub k: usize,
}

/// Computes eulertigs in the given graph.
fn compute_eulertigs<
    NodeIndex: GraphIndex<OptionalNodeIndex>,
    OptionalNodeIndex: OptionalGraphIndex<NodeIndex>,
    SequenceHandle: Default + Clone,
    EdgeData: BidirectedData + Eq + MatchtigEdgeData<SequenceHandle> + Clone,
    Graph: DynamicEdgeCentricBigraph<
        NodeIndex = NodeIndex,
        OptionalNodeIndex = OptionalNodeIndex,
        EdgeData = EdgeData,
    >,
>(
    graph: &mut Graph,
    configuration: &EulertigAlgorithmConfiguration,
) -> Vec<VecEdgeWalk<Graph>> {
    let k = configuration.k;

    info!("Collecting nodes with missing incoming or outgoing edges");
    let mut out_nodes = Vec::new(); // Misses outgoing edges
    let mut in_node_count = 0;
    let in_node_map = RelaxedAtomicBoolVec::new(graph.node_count());
    let mut node_multiplicities = vec![0; graph.node_count()];
    let mut unbalanced_self_mirror_count = 0;

    for node_index in graph.node_indices() {
        let diff = compute_eulerian_superfluous_out_biedges(graph, node_index);
        if graph.is_self_mirror_node(node_index) && diff != 0 {
            in_node_count += 1;
            in_node_map.set(node_index.as_usize(), true);
            node_multiplicities[node_index.as_usize()] = diff;
            out_nodes.push(node_index);
            unbalanced_self_mirror_count += 1;
        } else if diff > 0 {
            in_node_count += 1;
            in_node_map.set(node_index.as_usize(), true);
            node_multiplicities[node_index.as_usize()] = diff;
        } else if diff < 0 {
            out_nodes.push(node_index);
            node_multiplicities[node_index.as_usize()] = diff;
        }
    }

    info!(
        "Found {} nodes with missing outgoing edges",
        out_nodes.len()
    );
    info!("Found {} nodes with missing incoming edges", in_node_count);
    info!(
        "Of those there are {} self-mirrors",
        unbalanced_self_mirror_count
    );

    info!("Making graph Eulerian by adding breaking dummy edges");
    let dummy_sequence = SequenceHandle::default();
    let mut dummy_edge_id = 0;
    make_graph_eulerian_with_breaking_edges(graph, dummy_sequence, &mut dummy_edge_id, k);

    // Check if the graph now really is Eulerian, and if not, output some debug information
    if !decomposes_into_eulerian_bicycles(graph) {
        let non_eulerian_nodes_and_differences = find_non_eulerian_binodes_with_differences(graph);
        error!(
            "Failed to make the graph Eulerian. Non-Eulerian nodes and differences:\n{:?}",
            non_eulerian_nodes_and_differences
        );
        panic!("Failed to make the graph Eulerian.");
    }
    debug_assert!(graph.verify_node_pairing());
    debug_assert!(graph.verify_edge_mirror_property());
    debug_assert_graph_has_no_consecutive_dummy_edges(graph, k);

    info!("Finding Eulerian bicycle");
    //debug!("{:?}", graph);
    let mut eulerian_cycles = compute_minimum_bidirected_eulerian_cycle_decomposition(graph);
    info!("Found {} Eulerian bicycles", eulerian_cycles.len());

    info!("Breaking Eulerian bicycles at expensive temporary edges");
    let mut eulertigs = Vec::new();

    let mut removed_edges = 0;
    for eulerian_cycle in &mut eulerian_cycles {
        info!(
            "Processing Eulerian bicycle with {} biedges",
            eulerian_cycle.len()
        );
        debug_assert!(eulerian_cycle.is_circular_walk(graph));

        // Rotate cycle such that longest dummy is first edge
        let mut longest_dummy_weight = 0;
        let mut longest_dummy_index = 0;
        for (index, &edge) in eulerian_cycle.iter().enumerate() {
            let edge_data = graph.edge_data(edge);
            if edge_data.is_dummy() && edge_data.weight() > longest_dummy_weight {
                longest_dummy_weight = edge_data.weight();
                longest_dummy_index = index;
            }
        }
        if longest_dummy_weight > 0 {
            eulerian_cycle.rotate_left(longest_dummy_index);
        }

        let mut offset = 0;
        let mut last_edge_is_dummy = false;
        for (current_cycle_index, &current_edge_index) in eulerian_cycle.iter().enumerate() {
            let edge_data = graph.edge_data(current_edge_index);

            if edge_data.is_original() {
                last_edge_is_dummy = false;
            } else {
                if last_edge_is_dummy {
                    warn!(
                        "Found consecutive dummy edges at {}",
                        current_edge_index.as_usize()
                    );
                }
                last_edge_is_dummy = true;
            }

            if (edge_data.weight() >= k && edge_data.is_dummy())
                || (edge_data.is_dummy() && current_cycle_index == 0)
            {
                if offset < current_cycle_index {
                    eulertigs.push(eulerian_cycle[offset..current_cycle_index].to_owned());
                } else if current_cycle_index > 0 {
                    warn!("Found consecutive breaking edges");
                }
                offset = current_cycle_index + 1;
                removed_edges += 1;
            }
        }
        if offset < eulerian_cycle.len() {
            if graph
                .edge_data(*eulerian_cycle.last().unwrap())
                .is_original()
            {
                eulertigs.push(eulerian_cycle[offset..eulerian_cycle.len()].to_owned());
            } else if offset < eulerian_cycle.len() - 1 {
                eulertigs.push(eulerian_cycle[offset..eulerian_cycle.len() - 1].to_owned());
            }
        }
    }

    info!("Found {} expensive temporary edges", removed_edges);
    info!("Found {} eulertigs", eulertigs.len());

    for eulertig in &eulertigs {
        debug_assert!(!eulertig.is_empty());
        debug_assert!(graph.edge_data(*eulertig.first().unwrap()).is_original());
        debug_assert!(graph.edge_data(*eulertig.last().unwrap()).is_original());
    }

    eulertigs
}