Expand description
§Market Making Library
A comprehensive Rust library implementing quantitative market making strategies based on the Avellaneda-Stoikov model and extensions. This library provides production-ready components for building automated market making systems for financial markets.
§Overview
Market making is the practice of simultaneously providing buy (bid) and sell (ask) quotes in a financial market. The market maker profits from the bid-ask spread while providing liquidity to the market.
§Key Challenges Addressed
- Inventory Risk: Dynamic quote skewing based on position
- Adverse Selection: Order flow toxicity detection with VPIN
- Optimal Pricing: Stochastic control theory for spread optimization
- Risk Management: Circuit breakers, drawdown limits, and position controls
- Multi-Asset: Correlation-aware portfolio risk management
- Options Market Making: Greeks-aware quoting with delta hedging
§Features
§Strategy Models
- Avellaneda-Stoikov: Classic optimal market making with reservation price
- GLFT Extension: Guéant-Lehalle-Fernandez-Tapia with terminal penalties
- Grid Trading: Multi-level order placement with geometric/arithmetic spacing
- Adaptive Spread: Dynamic spread adjustment based on order book imbalance
- Depth-Based Offering: Size adjustment based on market depth
§Risk Management
- Position Limits: Maximum inventory size controls
- Notional Limits: Maximum value at risk
- Circuit Breakers: Automatic trading halts on adverse conditions
- Drawdown Tracking: Peak-to-trough monitoring with configurable limits
- Alert System: Configurable alerts for critical events
- Portfolio Risk: Correlation matrix and multi-asset VaR
§Analytics
- Order Flow Analysis: Trade flow imbalance and toxicity metrics
- VPIN Calculator: Volume-synchronized probability of informed trading
- Order Intensity Estimation: Fill rate modeling for parameter calibration
- Live Metrics: Real-time operational metrics with atomic counters
- Prometheus Export: Optional metrics export with Grafana dashboard
§Backtesting
- Event-Driven Engine: Tick-by-tick simulation
- Fill Models: Immediate, queue position, probabilistic, market impact
- Performance Metrics: Sharpe, Sortino, Calmar, max drawdown, profit factor
- Slippage Models: Fixed, percentage, volatility-based
§Execution
- Exchange Connector Trait: Abstract interface for any exchange
- Order Manager: Order lifecycle management with state tracking
- Latency Tracking: Histogram-based latency measurement
- Mock Connector: Testing without real exchange connectivity
- OrderBook-rs Connector: Integration with lock-free order book
§Options Market Making (Feature: options)
- Greeks Calculation: Delta, gamma, theta, vega, rho via OptionStratLib
- Portfolio Greeks: Aggregation across multiple positions
- Greeks-Aware Quoting: Spread adjustment based on gamma exposure
- Delta Hedging: Automatic hedge order generation
- Risk Management: Greeks-based limits and circuit breakers
- Auto-Hedging: Configurable triggers for delta neutralization
§Option Chain Integration (Feature: chain)
- Multi-Strike Quoting: Quote all strikes in an expiration
- Chain-Level Risk: Aggregate Greeks across the chain
- ATM Detection: Automatic spread adjustment for ATM options
- Chain Risk Manager: Chain-wide limits and hedging
§Parameter Calibration
- Risk Aversion (γ): Calibration from inventory half-life
- Order Intensity (k): Estimation from historical fill rates
- Volatility Regimes: Automatic detection and parameter adjustment
§The Avellaneda-Stoikov Model
The Avellaneda-Stoikov model (2008) solves the optimal market making problem using stochastic control theory. Key formulas:
§Reservation Price
r = s - q × γ × σ² × (T - t)§Optimal Spread
spread = γ × σ² × (T - t) + (2/γ) × ln(1 + γ/k)Where:
s: Mid priceq: Current inventoryγ: Risk aversion parameterσ: VolatilityT - t: Time remainingk: Order arrival intensity
§Modules
strategy: Quote generation algorithms (A-S, GLFT, Grid, Adaptive)position: Inventory tracking and PnL managementmarket_state: Market data and volatility estimationrisk: Limits, circuit breakers, alerts, and portfolio riskanalytics: Order flow, VPIN, intensity estimation, live metricsexecution: Exchange connectivity, order management, latency trackingbacktest: Historical simulation with fill models and metricstypes: Common types, decimals, and error definitionsprelude: Convenient re-exports of commonly used typesoptions: Options pricing, Greeks, and market making (feature:options)chain: Option chain integration and multi-strike quoting (feature:chain)api: REST/WebSocket API layer (feature:api)persistence: Data persistence layer (feature:persistence)multi_underlying: Multi-asset management (feature:multi-underlying)events: Event broadcasting system (feature:events)data_feeds: Real-time market data feeds (feature:data-feeds)
§Quick Start
use market_maker_rs::prelude::*;
// Calculate optimal quotes using Avellaneda-Stoikov
let mid_price = dec!(100.0);
let inventory = dec!(5.0);
let risk_aversion = dec!(0.5); // γ
let volatility = dec!(0.02);
let time_to_terminal_ms = 3600_000; // 1 hour
let order_intensity = dec!(1.5); // k
let (bid, ask) = market_maker_rs::strategy::avellaneda_stoikov::calculate_optimal_quotes(
mid_price,
inventory,
risk_aversion,
volatility,
time_to_terminal_ms,
order_intensity,
).unwrap();
println!("Bid: {}, Ask: {}", bid, ask);§Feature Flags
prometheus: Enable Prometheus metrics export (addsprometheus,hyper,tokiodependencies)serde: Enable serialization/deserialization for all typesoptions: Enable OptionStratLib integration for options pricing and Greeks calculationchain: Enable Option-Chain-OrderBook integration (includesoptions)api: Enable REST/WebSocket API layer with OpenAPI documentationpersistence: Enable persistence layer for market maker datamulti-underlying: Enable multi-asset management with correlation trackingevents: Enable event broadcasting system for real-time updatesdata-feeds: Enable real-time market data feed abstractions
§Examples
§Risk Management
use market_maker_rs::prelude::*;
// Set up position limits
let limits = RiskLimits::new(
dec!(100.0), // max 100 units position
dec!(10000.0), // max $10,000 notional
dec!(0.5), // 50% scaling factor
).unwrap();
// Check if order is allowed
let allowed = limits.check_order(dec!(50.0), dec!(10.0), dec!(100.0)).unwrap();
// Circuit breaker for automatic trading halts
let config = CircuitBreakerConfig::new(
dec!(1000.0), // max daily loss
dec!(0.05), // max loss per trade (5%)
5, // max consecutive losses
dec!(0.10), // max drawdown (10%)
300_000, // cooldown period (5 min)
60_000, // loss window (1 min)
).unwrap();
let breaker = CircuitBreaker::new(config);§Backtesting
ⓘ
use market_maker_rs::prelude::*;
// Configure backtest
let config = BacktestConfig::default()
.with_initial_capital(dec!(100000.0))
.with_fee_rate(dec!(0.001))
.with_slippage(SlippageModel::Fixed(dec!(0.01)));
// Run backtest with your strategy
let mut engine = BacktestEngine::new(config, strategy, data_source);
let result = engine.run();
println!("Net PnL: {}", result.net_pnl);
println!("Sharpe Ratio: {:?}", result.sharpe_ratio);
println!("Max Drawdown: {}", result.max_drawdown);§Portfolio Risk
use market_maker_rs::risk::portfolio::*;
use market_maker_rs::dec;
// Create correlation matrix
let btc = AssetId::new("BTC");
let eth = AssetId::new("ETH");
let mut matrix = CorrelationMatrix::new(vec![btc.clone(), eth.clone()]);
matrix.set_correlation(&btc, ð, dec!(0.8)).unwrap();
// Calculate portfolio risk
let mut portfolio = PortfolioPosition::new();
portfolio.set_position(btc, dec!(1.0), dec!(0.05));
portfolio.set_position(eth, dec!(10.0), dec!(0.08));
let calculator = PortfolioRiskCalculator::new(matrix);
let vol = calculator.portfolio_volatility(&portfolio).unwrap();§Options Greeks (Feature: options)
ⓘ
use market_maker_rs::options::{OptionsAdapter, PortfolioGreeks, PositionGreeks};
use optionstratlib::model::option::Options;
// Calculate Greeks for an option
let greeks = OptionsAdapter::calculate_greeks(&option).unwrap();
println!("Delta: {}, Gamma: {}", greeks.delta, greeks.gamma);
// Aggregate portfolio Greeks
let mut portfolio = PortfolioGreeks::new();
portfolio.add(&greeks, dec!(10.0)); // 10 contracts
// Check delta neutrality
let shares_to_hedge = portfolio.shares_to_hedge(dec!(100.0));§Options Market Making (Feature: options)
ⓘ
use market_maker_rs::options::{
OptionsMarketMaker, OptionsMarketMakerImpl, OptionsMarketMakerConfig,
GreeksLimits, PortfolioGreeks,
};
// Create market maker with Greeks-aware quoting
let config = OptionsMarketMakerConfig::default();
let market_maker = OptionsMarketMakerImpl::new(config);
// Calculate Greeks-adjusted quotes
let (bid, ask) = market_maker.calculate_greeks_adjusted_quotes(
&option,
&portfolio_greeks,
&risk_limits,
).unwrap();
// Get delta hedge suggestions
let hedges = market_maker.calculate_delta_hedge(
&portfolio_greeks,
underlying_price,
"BTC",
).unwrap();§Greeks Risk Management (Feature: options)
ⓘ
use market_maker_rs::options::{
GreeksRiskManager, AutoHedgerConfig, GreeksLimits, OrderDecision,
};
// Create risk manager with auto-hedging
let limits = GreeksLimits::default();
let hedger_config = AutoHedgerConfig::default();
let mut risk_manager = GreeksRiskManager::new("BTC", limits, hedger_config);
// Check if order is allowed
let decision = risk_manager.check_order(&option_greeks, dec!(10.0));
match decision {
OrderDecision::Allowed => { /* proceed */ },
OrderDecision::Scaled { new_size, .. } => { /* use scaled size */ },
OrderDecision::Rejected { reason } => { /* reject */ },
}
// Check if hedging is needed
if risk_manager.needs_hedge() {
let hedge = risk_manager.calculate_hedge_order(underlying_price);
}§Option Chain Market Making (Feature: chain)
ⓘ
use market_maker_rs::chain::{ChainMarketMaker, ChainMarketMakerConfig};
use option_chain_orderbook::orderbook::ExpirationOrderBook;
use std::sync::Arc;
// Create chain market maker
let chain = Arc::new(ExpirationOrderBook::new("BTC", expiration));
let config = ChainMarketMakerConfig::default();
let mm = ChainMarketMaker::new(chain, config);
// Refresh all quotes across the chain
let quotes = mm.refresh_all_quotes(underlying_price).unwrap();
// Check chain risk status
let status = mm.check_chain_risk();
if !status.can_quote() {
// Stop quoting or hedge
}§Multi-Underlying Management (Feature: multi-underlying)
ⓘ
use market_maker_rs::multi_underlying::{
MultiUnderlyingManager, UnderlyingConfig, CapitalAllocationStrategy,
};
use market_maker_rs::dec;
// Create manager with $1M capital
let mut manager = MultiUnderlyingManager::new(dec!(1_000_000))
.with_allocation_strategy(CapitalAllocationStrategy::RiskParity)
.with_max_total_delta(dec!(50000));
// Add underlyings with target weights
manager.add_underlying(UnderlyingConfig::new("BTC", dec!(0.40))).unwrap();
manager.add_underlying(UnderlyingConfig::new("ETH", dec!(0.30))).unwrap();
// Set correlations
manager.set_correlation("BTC", "ETH", dec!(0.85));
// Update market data
manager.update_price("BTC", dec!(45000));
manager.update_greeks("BTC", dec!(5.5), dec!(0.02), dec!(1500));
// Get unified risk view
let risk = manager.get_unified_risk();
println!("Total delta: {}", risk.greeks.total_dollar_delta);
// Get cross-asset hedge suggestions
let hedges = manager.get_cross_asset_hedges();§Event Broadcasting (Feature: events)
ⓘ
use market_maker_rs::events::{
EventBroadcaster, EventBroadcasterConfig, EventFilter, EventType,
MarketMakerEvent, Side,
};
use std::sync::Arc;
// Create broadcaster
let config = EventBroadcasterConfig::default();
let broadcaster = Arc::new(EventBroadcaster::new(config));
// Subscribe to all events
let mut all_rx = broadcaster.subscribe();
// Subscribe with filter (fills only)
let filter = EventFilter::new()
.with_event_types([EventType::OrderFilled])
.with_symbols(["BTC".to_string()]);
let mut filtered_rx = broadcaster.subscribe_filtered(filter);
// Broadcast an event
broadcaster.broadcast(MarketMakerEvent::OrderFilled {
order_id: "ORD-001".to_string(),
symbol: "BTC".to_string(),
instrument: "BTC-PERP".to_string(),
side: Side::Buy,
quantity: 10,
price: 50000,
fee: 5,
edge: 100,
timestamp: 1234567890,
}).await;
// Get history for reconnection
let missed = broadcaster.get_reconnection_history(last_sequence).await;Modules§
- analytics
- Analytics module for market microstructure analysis.
- backtest
- Backtesting module for strategy validation on historical data.
- execution
- Execution module for exchange connectivity and order management.
- market_
state - Market state module containing market data representations.
- position
- Position tracking module for inventory and PnL management.
- prelude
- Prelude module for convenient imports.
- risk
- Risk management module for comprehensive risk control.
- strategy
- Strategy module containing quote generation algorithms.
- types
- Common types and error definitions.
Macros§
- dec
- Transform a literal number directly to a
Decimalat compile time.
Structs§
- Decimal
Decimalrepresents a 128 bit representation of a fixed-precision decimal number. The finite set of values of typeDecimalare of the form m / 10e, where m is an integer such that -296 < m < 296, and e is an integer between 0 and 28 inclusive.