1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
//! Implements necessary methods on vectors.
use std::{
fmt,
ops::{
Add,
Sub,
Index,
IndexMut,
},
};
use rand::{
random,
thread_rng,
};
use rand_distr::{
Distribution,
Normal,
};
use super::Matrix;
#[derive(Clone, Copy, PartialEq, Debug)]
/// Abstracts over a vector of arbitary dimension.
pub struct Vector<const N: usize> {
/// Contains the values of this vector.
values: [f64; N],
}
/// Implements necessary behaviors of a vector.
impl<const N: usize> Vector<N> {
/// Constructs a zero vector.
pub fn zero() -> Self {
Self {
values: [0.0; N],
}
}
/// Constructs a vector of provided values.
pub fn new(values: [f64; N]) -> Self {
Self {
values,
}
}
/// Constructs an orthogonal basis of vectors.
pub fn basis() -> [Self; N] {
let mut basis = [Self::zero(); N];
for i in 0..N {
basis[i][i] = 1.0;
}
basis
}
/// Scales a vector by a provided scalar, returning the new vector.
pub fn scale(&self, scalar: f64) -> Self {
let mut newvalues = [0.0; N];
for i in 0..N {
newvalues[i] = scalar * self[i];
}
Self {
values: newvalues,
}
}
/// Dots this vector with another vector.
pub fn dot(&self, other: Self) -> f64 {
let mut output = 0.0;
for i in 0..N {
output += self[i] * other[i];
}
output
}
/// Crosses this vector with another vector.
///
/// *Note*: this is only implemented for `Vector<3>`.
/// Otherwise, this returns a zero vector.
pub fn cross(&self, other: Self) -> Self {
let mut output = Self::zero();
if N == 3 {
output[0] = self[1] * other[2] - self[2] * other[1];
output[1] = self[2] * other[0] - self[0] * other[2];
output[2] = self[0] * other[1] - self[1] * other[0];
}
output
}
/// Takes the norm of a vector.
pub fn norm(&self) -> f64 {
let mut output = 0.0;
for i in 0..N {
output += self[i].powf(2.0);
}
output.sqrt()
}
/// Left-multiplies the provided matrix by the transpose of this vector, returning the result.
pub fn mult(&self, matrix: Matrix<N>) -> Self {
let mut output = Self::zero();
for i in 0..N {
for j in 0..N {
output[i] += matrix[(i, j)] * self[j];
}
}
output
}
/// Given two vectors, generate a "child" vector.
/// This function is useful for genetic optimization algorithms.
pub fn child(mother: &Self, father: &Self, stdev: f64) -> Self {
let mut child = Self::zero();
for i in 0..N {
// Select gene for child
child[i] = if random::<f64>() < 0.5 {
mother[i]
} else {
father[i]
};
// Mutate this gene
// NOTE: it's ok to use `unwrap` here because we
// know that we will always be able to create a normal
// distribution of type N(0, `stdev`)
let normal = Normal::new(0.0, stdev).unwrap();
let v = normal.sample(&mut thread_rng());
child[i] += v;
}
child
}
/// Determines if this vector is within the element-wise contraints.
pub fn check(&self, lower: [Option<f64>; N], upper: [Option<f64>; N]) -> bool {
for i in 0..N {
if let Some (l) = lower[i] {
if self[i] < l {
return false;
}
} else if let Some (u) = upper[i] {
if self[i] > u {
return false;
}
}
}
true
}
}
impl<const N: usize> From<[f64; N]> for Vector<N> {
fn from(values: [f64; N]) -> Self {
Self::new(values)
}
}
impl<const N: usize> Index<usize> for Vector<N> {
type Output = f64;
fn index(&self, idx: usize) -> &Self::Output {
&self.values[idx]
}
}
impl<const N: usize> IndexMut<usize> for Vector<N> {
fn index_mut(&mut self, idx: usize) -> &mut Self::Output {
&mut self.values[idx]
}
}
impl<const N: usize> Add for Vector<N> {
type Output = Self;
fn add(self, other: Self) -> Self {
let mut new = Self::zero();
for i in 0..self.values.len() {
new[i] = self[i] + other[i];
}
new
}
}
impl<const N: usize> Sub for Vector<N> {
type Output = Self;
fn sub(self, other: Self) -> Self {
let mut new = Self::zero();
for i in 0..N {
new[i] = self[i] - other[i];
}
new
}
}
impl<const N: usize> fmt::Display for Vector<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut rows = Vec::new();
let mut maxlen = 0;
for i in 0..N {
let row = format!("{:.8}", self[i]);
let l = row.len();
rows.push(row);
if l > maxlen {
maxlen = l;
}
}
let mut output = String::new();
for i in 0..N {
output.push_str("[");
output.push_str(
&format!("{:^i$}", rows[i], i = maxlen + 2)
);
output.push_str("]\n");
}
write!(f, "{}", output)
}
}