1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//! Reactive primitives.

use std::cell::RefCell;
use std::rc::Rc;

/// Returned by functions that provide a handle to access state.
pub type StateHandle<T> = Rc<dyn Fn() -> Rc<T>>;

/// Returned by functions that provide a closure to modify state.
pub type SetStateHandle<T> = Rc<dyn Fn(T)>;

struct Signal<T> {
    inner: Rc<T>,
    observers: Vec<Rc<Computation>>,
}

impl<T> Signal<T> {
    fn new(value: T) -> Self {
        Self {
            inner: Rc::new(value),
            observers: Vec::new(),
        }
    }

    fn observe(&mut self, handler: Rc<Computation>) {
        // make sure handler is not already in self.observers
        if self
            .observers
            .iter()
            .find(|observer| {
                observer.as_ref() as *const Computation == handler.as_ref() as *const Computation
                /* do reference equality */
            })
            .is_none()
        {
            self.observers.push(handler);
        }
    }

    fn update(&mut self, new_value: T) {
        self.inner = Rc::new(new_value);
    }

    fn trigger_observers(&self) {
        for observer in &self.observers {
            observer.0();
        }
    }
}

/// A derived computation from a signal.
struct Computation(Box<dyn Fn()>);

thread_local! {
    static HANDLER: RefCell<Option<Rc<Computation>>> = RefCell::new(None);

    /// To add the dependencies, iterate through functions and execute them.
    static DEPENDENCIES: RefCell<Option<Vec<Box<dyn Fn()>>>> = RefCell::new(None);
}

/// Creates a new signal.
/// The function will return a pair of getter/setters to modify the signal and update corresponding dependencies.
///
/// # Example
/// ```rust
/// use maple_core::prelude::*;
///
/// let (state, set_state) = create_signal(0);
/// assert_eq!(*state(), 0);
///
/// set_state(1);
/// assert_eq!(*state(), 1);
/// ```
pub fn create_signal<T: 'static>(value: T) -> (StateHandle<T>, SetStateHandle<T>) {
    let signal = Rc::new(RefCell::new(Signal::new(value)));

    let getter = {
        let signal = signal.clone();
        move || {
            // if inside an effect, add this signal to dependency list
            DEPENDENCIES.with(|dependencies| {
                if dependencies.borrow().is_some() {
                    let signal = signal.clone();
                    let handler =
                        HANDLER.with(|handler| handler.borrow().as_ref().unwrap().clone());

                    dependencies
                        .borrow_mut()
                        .as_mut()
                        .unwrap()
                        .push(Box::new(move || {
                            signal.borrow_mut().observe(handler.clone())
                        }));
                }
            });

            signal.borrow().inner.clone()
        }
    };

    let setter = {
        let signal = signal.clone();
        move |new_value| {
            match signal.try_borrow_mut() {
                Ok(mut signal) => signal.update(new_value),
                // If the signal is already borrowed, that means it is borrowed in the getter, thus creating a cyclic dependency.
                Err(_err) => panic!("cannot create cyclic dependency"),
            };
            signal.borrow().trigger_observers();
        }
    };

    (Rc::new(getter), Rc::new(setter))
}

/// Creates an effect on signals used inside the effect closure.
pub fn create_effect<F>(effect: F)
where
    F: Fn() + 'static,
{
    DEPENDENCIES.with(|dependencies| {
        if dependencies.borrow().is_some() {
            unimplemented!("nested dependencies are not supported")
        }

        let effect = Rc::new(Computation(Box::new(effect)));

        *dependencies.borrow_mut() = Some(Vec::new());
        HANDLER.with(|handler| *handler.borrow_mut() = Some(effect.clone()));

        // run effect for the first time to attach all the dependencies
        effect.0();

        // attach dependencies
        for dependency in dependencies.borrow().as_ref().unwrap() {
            dependency();
        }

        // Reset dependencies for next effect hook
        *dependencies.borrow_mut() = None;
    })
}

/// Prevents tracking dependencies inside the closure. If called outside a reactive context, does nothing.
///
/// # Example
/// ```rust
/// use maple_core::prelude::*;
///
/// let (state, set_state) = create_signal(1);
///
/// let double = create_memo(move || untracked(|| *state()) * 2);
///
/// assert_eq!(*double(), 2);
///
/// set_state(2);
/// assert_eq!(*double(), 2); // double value should still be old value because state() was inside untracked
/// ```
pub fn untracked<F, Out>(f: F) -> Out
where
    F: Fn() -> Out,
{
    let tmp = DEPENDENCIES.with(|dependencies| dependencies.take());
    let out = f();
    DEPENDENCIES.with(|dependencies| *dependencies.borrow_mut() = tmp);

    out
}

/// Creates a memoized value from some signals. Also know as "derived stores".
pub fn create_memo<F, Out>(derived: F) -> StateHandle<Out>
where
    F: Fn() -> Out + 'static,
    Out: Clone + 'static,
{
    let derived = Rc::new(derived);
    let (memo, set_memo) = create_signal(None);

    create_effect({
        let derived = derived.clone();
        move || {
            set_memo(Some(derived()));
        }
    });

    // return memoized result
    let memo_result = move || Rc::new(Option::as_ref(&memo()).unwrap().clone());
    Rc::new(memo_result)
}

/// Creates a memoized value from some signals. Also know as "derived stores".
/// Unlike [`create_memo`], this function will not notify dependents of a change if the output is the same.
/// That is why the output of the function must implement `PartialEq`.
pub fn create_selector<F, Out>(derived: F) -> StateHandle<Out>
where
    F: Fn() -> Out + 'static,
    Out: Clone + PartialEq + std::fmt::Debug + 'static,
{
    let derived = Rc::new(derived);
    let (memo, set_memo) = create_signal(None);

    create_effect({
        let derived = derived.clone();
        let memo = memo.clone();
        move || {
            let new_value = Some(derived());
            if *untracked(|| memo()) != new_value {
                set_memo(new_value);
            }
        }
    });

    // return memoized result
    let memo_result = move || Rc::new(Option::as_ref(&memo()).unwrap().clone());
    Rc::new(memo_result)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn signals() {
        let (state, set_state) = create_signal(0);
        assert_eq!(*state(), 0);

        set_state(1);
        assert_eq!(*state(), 1);
    }

    #[test]
    fn signal_composition() {
        let (state, set_state) = create_signal(0);

        let double = || *state() * 2;

        assert_eq!(double(), 0);

        set_state(1);
        assert_eq!(double(), 2);
    }

    #[test]
    fn effects() {
        let (state, set_state) = create_signal(0);

        let (double, set_double) = create_signal(-1);

        create_effect({
            let set_double = set_double.clone();
            move || {
                set_double(*state() * 2);
            }
        });
        assert_eq!(*double(), 0); // calling create_effect should call the effect at least once

        set_state(1);
        assert_eq!(*double(), 2);
        set_state(2);
        assert_eq!(*double(), 4);
    }

    #[test]
    #[should_panic(expected = "cannot create cyclic dependency")]
    fn cyclic_effects_fail() {
        let (state, set_state) = create_signal(0);

        create_effect({
            let state = state.clone();
            let set_state = set_state.clone();
            move || {
                set_state(*state() + 1);
            }
        });

        set_state(1);
    }

    #[test]
    #[should_panic(expected = "cannot create cyclic dependency")]
    fn cyclic_effects_fail_2() {
        let (state, set_state) = create_signal(0);

        create_effect({
            let state = state.clone();
            let set_state = set_state.clone();
            move || {
                let value = *state();
                set_state(value + 1);
            }
        });

        set_state(1);
    }

    #[test]
    fn effect_should_subscribe_once() {
        let (state, set_state) = create_signal(0);

        let (counter, set_counter) = create_signal(0);
        create_effect({
            let counter = counter.clone();
            move || {
                set_counter(untracked(|| *counter()) + 1);

                // call state() twice but should subscribe once
                state();
                state();
            }
        });

        assert_eq!(*counter(), 1);

        set_state(1);
        assert_eq!(*counter(), 2);
    }

    #[test]
    fn memo() {
        let (state, set_state) = create_signal(0);

        let double = create_memo(move || *state() * 2);
        assert_eq!(*double(), 0);

        set_state(1);
        assert_eq!(*double(), 2);

        set_state(2);
        assert_eq!(*double(), 4);
    }

    #[test]
    /// Make sure value is memoized rather than executed on demand.
    fn memo_only_run_once() {
        let (state, set_state) = create_signal(0);

        let (counter, set_counter) = create_signal(0);
        let double = create_memo({
            let counter = counter.clone();
            move || {
                set_counter(untracked(|| *counter()) + 1);

                *state() * 2
            }
        });
        assert_eq!(*counter(), 1); // once for calculating initial derived state

        set_state(2);
        assert_eq!(*counter(), 2);
        assert_eq!(*double(), 4);
        assert_eq!(*counter(), 2); // should still be 2 after access
    }

    #[test]
    fn dependency_on_memo() {
        let (state, set_state) = create_signal(0);

        let double = create_memo(move || *state() * 2);

        let quadruple = create_memo(move || *double() * 2);

        assert_eq!(*quadruple(), 0);

        set_state(1);
        assert_eq!(*quadruple(), 4);
    }

    #[test]
    fn untracked_memo() {
        let (state, set_state) = create_signal(1);

        let double = create_memo(move || untracked(|| *state()) * 2);

        assert_eq!(*double(), 2);

        set_state(2);
        assert_eq!(*double(), 2); // double value should still be true because state() was inside untracked
    }

    #[test]
    fn selector() {
        let (state, set_state) = create_signal(0);

        let double = create_selector({
            let state = state.clone();
            move || *state() * 2
        });

        let (counter, set_counter) = create_signal(0);
        create_effect({
            let counter = counter.clone();
            let double = double.clone();
            move || {
                set_counter(untracked(|| *counter()) + 1);

                double();
            }
        });
        assert_eq!(*double(), 0);
        assert_eq!(*counter(), 1);

        set_state(0);
        assert_eq!(*double(), 0);
        assert_eq!(*counter(), 1); // calling set_state should not trigger the effect

        set_state(2);
        assert_eq!(*double(), 4);
        assert_eq!(*counter(), 2);
    }
}