1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#![allow(dead_code)]

extern crate libc;
#[cfg(feature="jemalloc")]
extern crate jemalloc_sys;


#[cfg(test)]
mod tests {
    use super::*;
    
    #[test]
    fn as_slice() {
	let heap = heap![unsafe 0, 1, 2, 3u8];

	assert_eq!(heap.as_slice(), [0,1,2,3u8]);
    }
    
    #[test]
    fn non_trivial_type() {
	let heap = heap!["test one".to_owned(), "test two".to_owned()];

	assert_eq!(heap.as_slice(), ["test one", "test two"]);
    }

    struct Unit;

    #[test]
    fn reinterpret()
    {
	let heap = heap![u8; 32];
	unsafe {
	    let heap = heap.reinterpret::<i32>();
	    assert_eq!(heap.len(), 8);
	    let heap = heap.reinterpret::<u8>();
	    assert_eq!(heap.len(), 32);
	}
    }
    
    #[test]
    fn zero_size() {
	let heap: HeapArray<u8> = heap![];
	let heap_zst: HeapArray<()> = heap![(); 3];

	assert_eq!(&heap.as_slice(), &[]);
	assert_eq!(&heap_zst.as_slice(), &[(),(),()]);

	let heap = heap![Unit; 32];
	let mut i=0;
	for _x in heap.into_iter()
	{
	    i+=1;
	}
	assert_eq!(i, 32);
    }

    #[test]
    fn into_iter() {
	let primitive = heap![1,3,5,7,9u32];

	let iter = primitive.into_iter();
	assert_eq!(iter.len(), 5);
	for x in iter
	{
	    assert_eq!(x % 2, 1);
	}

	let non = heap!["string one".to_owned(), "string two!".to_owned(), "string".to_owned()];

	let iter = non.into_iter();
	assert_eq!(iter.len(), 3);
	for x in iter
	{
	    assert_eq!(&x[..6], "string");	    
	}
    }
    
    #[test]
    fn vec()
    {
	let heap = heap![0,1,2,3,4u8];
	let vec = vec![0,1,2,3,4u8];

	assert_eq!(&vec[..], &heap[..]);

	let heap = Vec::from(heap);

	assert_eq!(vec,heap);

	let heap = HeapArray::from(heap);

	assert_eq!(&vec[..], &heap[..]);
    }
    
    #[test]
    fn boxed_slices() {
	let array = [0,1,2,3,4];
	let vector = vec![0,1,2,3,4];
	assert_eq!(&vector[..], &array[..]);
	let slice = vector.into_boxed_slice();
	assert_eq!(&slice[..], &array[..]);
	let heap = HeapArray::from_boxed_slice(slice);
	assert_eq!(&heap[..], &array[..]);
	let slice = heap.into_boxed_slice();
	assert_eq!(&slice[..], &array[..]);
	let vector = Vec::from(slice);
	assert_eq!(&vector[..], &array[..]);
    }
}

mod ptr;
mod alloc;
mod reinterpret;

use std::{
    ops::{
	Drop,
	Index,IndexMut,
	Deref,DerefMut,
    },
    borrow::{
	Borrow,BorrowMut,
    },
    slice::{
	self,
	SliceIndex,
    },
    marker::{
	Send,
	Sync,
    },
};
use crate::{
    ptr::{
	VoidPointer,
    },
};

#[macro_export]
/// `vec![]`-like macro for creating `HeapArray<T>` instances.
///
/// Provices methods for creating safly accessable arrays using `malloc()` with a `Vec<T>` like interface.
/// Also provides methods of optimising deallocations.
///
/// # Usage
///
/// Works like array definitions `[type; size]`, and like the `vec![]` macro `[value; size]`. Prepend the statement with `unsafe` (`[unsafe type|value; size]`) to prevent potentially redundant `drop()` calls.
///
/// # Examples
///
/// ```rust
///  use malloc_array::{heap, HeapArray};
///  let ints = heap![unsafe 4u32; 32]; // Creates a 32 element `u32` array with each element set to `4`.
///  let ints = heap![unsafe u32; 32]; // Creates an uninitialised 32 element `u32` array.
///  let ints = heap![u32; 32]; // Same as above, except when `ints` is dropped, each element will be also dropped redundantly.
///  let strings = heap!["string one".to_owned(), "string two".to_owned()]; //Creates a 2 element string array.
///  let strings = heap![unsafe "memory".to_owned(), "leak".to_owned()]; //Same as above, except `drop()` will not be called on the 2 strings, potentially causing a memory leak.
///  let strings: HeapArray<u8> = heap![]; //Creates an empty `u8` array.
/// ```
macro_rules! heap {
    () => {
	$crate::HeapArray::new_uninit(0)
    };
    (@) => (0usize);
    (@ $x:tt $($xs:tt)* ) => (1usize + $crate::heap!(@ $($xs)*));

    (unsafe $($xs:tt)*) => {
	{
	    #[allow(unused_unsafe)]
	    unsafe {
		let mut output = $crate::heap!($($xs)*);
		output.drop_check = false;
		output
	    }
	}
    };
    
    ($type:ty; $number:expr) => {
	{
	    $crate::HeapArray::<$type>::new($number)
	}
    };
    ($value:expr; $number:expr) => {
	{
	    let num = $number;
	    let mut ha = $crate::HeapArray::new_uninit(num);
	    
	    for x in 0..num {
		ha.replace_and_forget(x, $value);
	    }
	    
	    ha
	}
    };
    ($($n:expr),*) => {
	{
	    let mut ha = $crate::HeapArray::new_uninit($crate::heap!(@ $($n)*));
	    {
		let fp = 0;
		$(
		    let fp = fp + 1; 
		    ha.replace_and_forget(fp-1, $n);
		)*
	    }
	    ha
	}
    };
}

/// Array created by libc `malloc()` and dropped by libc `free()`.
pub struct HeapArray<T> {
    ptr: *mut T,
    size: usize,

    /// Call `drop()` on sub-elements when `drop`ping the array. This is not needed for types that implement `Copy`.
    pub drop_check: bool,
}

unsafe impl<T> Sync for HeapArray<T>
where T: Sync{}
unsafe impl<T> Send for HeapArray<T>
where T: Send{}

impl<T> HeapArray<T>
{
    /// Size of memory of this instance in bytes.
    pub fn len_bytes(&self) -> usize
    {
	Self::element_size() * self.size
    }

    /// Number of elements in this instance.
    pub fn len(&self) -> usize
    {
	self.size
    }
    
    const fn element_size() -> usize
    {
	std::mem::size_of::<T>()
    }
    const fn is_single() -> bool
    {
	std::mem::size_of::<T>() == 1
    }

    /// Creates a new `HeapArray<T>` from zeroed memory.
    pub fn new(size: usize) -> Self
    {
	Self {
	    ptr: unsafe{alloc::calloc(size, Self::element_size()).expect("calloc()")} as *mut T,
	    size,
	    drop_check: true,
	}
    }

    /// Creates a new `HeapArray<T>` from uninitialised memory.
    pub fn new_uninit(size: usize) -> Self
    {
	Self {
	    ptr: unsafe{alloc::malloc(size * Self::element_size()).expect("malloc()")} as *mut T,
	    size,
	    drop_check: true,
	}
    }

    /// Consumes the instance, returning a new instance after calling `realloc()` on the underlying memory.
    pub fn resize(self, size: usize) -> Self
    {
	unsafe {
	    let ptr = alloc::realloc(self.ptr as VoidPointer, size).expect("realloc()") as *mut T;
	    
	    let output = Self {
		ptr,
		size,
		drop_check: self.drop_check
	    };
	    std::mem::forget(self);
	    output
	}
    }

    /// Creates a new `HeapArray<T>` from an initial element and a size.
    pub fn new_repeat(initial: T, size: usize) -> Self
    where T: Copy
    {
	let this = Self::new_uninit(size);
	if size > 0 {
	    if Self::is_single() {
		unsafe {
		    ptr::memset(this.ptr as *mut u8, reinterpret::bytes(initial), this.len_bytes());
		}
	    } else {
		unsafe {
		    for x in 0..size {
			*this.ptr.offset(x as isize) = initial;
		    }
		}
	    }
	}
	this
    }

    /// Creates a new `HeapArray<T>` from a range of elements and a size, repeating if needed.
    pub fn new_range<U>(initial: U, size: usize) -> Self
    where T: Copy,
	  U: AsRef<[T]>
    {
	let initial = initial.as_ref();
	if size > 0 {
	    if initial.len() == 1 {
		Self::new_repeat(initial[0], size)
	    } else {
		let this = Self::new_uninit(size);
		unsafe {
		    for x in 0..size {
			*this.ptr.offset(x as isize) = initial[x % initial.len()];
		    }
		    this
		}
	    }
	} else {
	    Self::new_uninit(size)
	}
    }

    /// As an immutable slice of `T`.
    pub fn as_slice(&self) -> &[T]
    {
	unsafe{slice::from_raw_parts(self.ptr, self.size)}
    }

    /// As a mutable slice of `T`.
    pub fn as_slice_mut(&mut self) -> &mut [T]
    {
	unsafe{slice::from_raw_parts_mut(self.ptr, self.size)}
    }

    /// As immutable raw pointer.
    pub fn as_ptr(&self) -> *const T
    {
	self.ptr as *const T
    }

    /// As mutable raw pointer.
    pub fn as_ptr_mut(&mut self) -> *mut T
    {
	self.ptr
    }

    /// An immutable slice of the memory.
    pub fn memory(&self) -> &[u8]
    {
	unsafe {
	    slice::from_raw_parts(self.ptr as *const u8, self.len_bytes())
	}
    }

    /// A mutable slice of the memory.
    pub unsafe fn memory_mut(&mut self) -> &mut [u8]
    {
	slice::from_raw_parts_mut(self.ptr as *mut u8, self.len_bytes())
    }


    /// Consumes the instance. Returns a raw pointer and the number of elements.
    pub fn into_raw_parts(self) -> (*mut T, usize)
    {
	let op = (self.ptr, self.size);
	std::mem::forget(self);
	op
    }

    /// Create a `HeapArray<T>` from a raw pointer and a number of elements.
    pub unsafe fn from_raw_parts(ptr: *mut T, size: usize) -> Self
    {
	Self {
	    ptr,
	    size,
	    drop_check: true,
	}
    }

    /// Consumes the instance. Frees the memory without dropping the items.
    pub fn free(self)
    {
	if self.ptr != ptr::null() {
	    unsafe {
		alloc::free(self.ptr as VoidPointer);
	    }
	}
	std::mem::forget(self);
    }

    /// Consumes the instance, moving all elements into a slice.
    pub fn into_slice(self, slice: &mut [T])
    {
	let ptr = &mut slice[0] as *mut T;
	assert!(slice.len() >= self.len());
	unsafe{
	    ptr::memmove(ptr as ptr::VoidPointer, self.ptr as ptr::VoidPointer, self.len_bytes());
	}
	self.free();
    }

    /// Coerce of clone memory from a boxed slice.
    pub fn from_boxed_slice(bx: Box<[T]>) -> Self
    {
	#[cfg(feature="assume_libc")]
	unsafe {
	    let len = bx.len();
	    Self::from_raw_parts(Box::<[T]>::into_raw(bx) as *mut T, len)
	}
	#[cfg(not(feature="assume_libc"))]
	{
	    let len = bx.len();
	    let out = Self::from(Vec::from(bx));
	    assert_eq!(len, out.len());
	    out
	}
    }

    /// Coerce or clone memory into a boxed slice.
    #[allow(unused_mut)]
    pub fn into_boxed_slice(mut self) -> Box<[T]>
    {
	#[cfg(feature="assume_libc")]
	unsafe {
	    let bx = Box::from_raw(self.as_slice_mut() as *mut [T]);
	    std::mem::forget(self);
	    bx
	}
	#[cfg(not(feature="assume_libc"))]
	{
	    let len = self.len();
	    let vec = Vec::from(self);
	    assert_eq!(vec.len(), len);
	    vec.into_boxed_slice()
	}
    }

    /// Reinterpret the memory of this instance into an insteance of a different type
    /// # Panics
    /// If `U` cannot fit into `T`.  
    pub unsafe fn reinterpret<U>(self) -> HeapArray<U>
    {
	assert!(self.len_bytes() % std::mem::size_of::<U>() == 0);
	let output = HeapArray {
	    size: self.len_bytes() / std::mem::size_of::<U>(),
	    ptr: self.ptr as *mut U,
	    drop_check: self.drop_check,
	};
	std::mem::forget(self);
	output
    }

    /// Reinterpret the memory of this instance into an immutable slice of a different type.
    /// # Panics
    /// If `U` cannot fit into `T`.  
    pub fn reinterpret_ref<U>(&self) -> &[U]
    {
	assert!(self.len_bytes() % std::mem::size_of::<U>() == 0);
	unsafe {
	    slice::from_raw_parts(self.ptr as *const U, self.len_bytes() / std::mem::size_of::<U>())
	}
    }
    /// Reinterpret the memory of this instance into a mutable slice of a different type.
    /// # Panics
    /// If `U` cannot fit into `T`.  
    pub unsafe fn reinterpret_mut<U>(&mut self) -> &mut [U]
    {
	assert!(self.len_bytes() % std::mem::size_of::<U>() == 0);
	slice::from_raw_parts_mut(self.ptr as *mut U, self.len_bytes() / std::mem::size_of::<U>())
    }

    /// Immutable slice iterator for this instance
    pub fn iter<'a>(&'a self) -> slice::Iter<'a, T>
    {
	self.as_slice().iter()
    }

    /// Mutable slice iterator for this instance
    pub fn iter_mut<'a>(&'a mut self) -> slice::IterMut<'a, T>
    {
	self.as_slice_mut().iter_mut()
    }

    /// Replace the element at `index` with `value`, and `forget` the old one.
    /// Useful with `new_uninit()`.
    pub fn replace_and_forget(&mut self, index: usize, value: T)
    {
	assert!(index<self.len());
	unsafe {
	    ptr::put(self.as_ptr_mut().offset(index as isize), value);
	}
    }


    /// Clone the memory to a new instance.
    pub unsafe fn clone_mem(&self) -> Self
    {
	let mut output = Self::new_uninit(self.len());
	output.drop_check = self.drop_check;
	ptr::memcpy(output.ptr as VoidPointer, self.ptr as VoidPointer, self.len_bytes());

	output
    }

    /// Leak the memory to a static slice reference.
    pub fn leak(mut self) -> &'static mut [T]
    {
	unsafe {
	    let bx = Box::from_raw(self.as_slice_mut() as *mut [T]);
	    std::mem::forget(self);
	    Box::leak(bx)
	}
    }
}

impl<T, I> Index<I> for HeapArray<T>
where I: SliceIndex<[T]>
{
    type Output = <I as SliceIndex<[T]>>::Output;
    fn index(&self, index: I) -> &Self::Output
    {
	&self.as_slice()[index]
    }
}


impl<T, I> IndexMut<I> for HeapArray<T>
where I: SliceIndex<[T]>
{
    fn index_mut(&mut self, index: I) -> &mut <Self as Index<I>>::Output
    {
	&mut self.as_slice_mut()[index]
    }
}

impl<T> Drop for HeapArray<T>
{
    fn drop(&mut self)
    {
	if self.ptr != ptr::null::<T>() {
	    if self.drop_check {
		for i in 0..self.size
		{
		    unsafe {
			drop(ptr::take(self.ptr.offset(i as isize)));
		    }
		}
	    }
	    unsafe{alloc::free(self.ptr as VoidPointer)};
	    self.ptr = ptr::null::<T>();
	}
    }
}

impl<T> AsMut<[T]> for HeapArray<T>
{
    fn as_mut(&mut self) -> &mut [T]
    {
	self.as_slice_mut()
    }
}
impl<T> AsRef<[T]> for HeapArray<T>
{
    fn as_ref(&self) -> &[T]
    {
	self.as_slice()
    }
}

impl<T> Deref for HeapArray<T>
{
    type Target = [T];
    fn deref(&self) -> &Self::Target
    {
	self.as_slice()
    }
}
impl<T> DerefMut for HeapArray<T>
{
    fn deref_mut(&mut self) -> &mut <Self as Deref>::Target
    {
	self.as_slice_mut()
    }
}

impl<T> Borrow<[T]> for HeapArray<T>
{
    fn borrow(&self) -> &[T]
    {
	self.as_slice()
    }
}
impl<T> BorrowMut<[T]> for HeapArray<T>
{
    fn borrow_mut(&mut self) -> &mut [T]
    {
	self.as_slice_mut()
    }
}

// `From`s

impl<T> From<HeapArray<T>> for Vec<T>
{
    fn from(ha: HeapArray<T>) -> Self
    {
	let mut output = Vec::with_capacity(ha.len());
	unsafe {
	    ptr::memmove(output.as_mut_ptr() as ptr::VoidPointer, ha.ptr as ptr::VoidPointer, ha.len_bytes());
	    output.set_len(ha.len());
	}
	ha.free();
	output
    }
}
impl<T> From<Vec<T>> for HeapArray<T>
{
    fn from(vec: Vec<T>) -> Self
    {
	let mut output = HeapArray::new_uninit(vec.len());
	for (i,x) in (0..vec.len()).zip(vec.into_iter())
	{
	    output[i] = x;
	}
	output
    }
}

impl<T> From<Box<[T]>> for HeapArray<T>
{
    fn from(sl: Box<[T]>) -> Self
    {
	Self::from_boxed_slice(sl)
    }
}
impl<T> From<HeapArray<T>> for Box<[T]>
{
    fn from(ha: HeapArray<T>) -> Self
    {
	ha.into_boxed_slice()
    }
}

mod iter;
pub use iter::*;

impl<T> std::cmp::Eq for HeapArray<T>
where T: std::cmp::Eq {}
impl<T, U> std::cmp::PartialEq<U> for HeapArray<T>
where T: std::cmp::PartialEq,
      U: AsRef<[T]>
{
    fn eq(&self, other: &U) -> bool
    {
	let other = other.as_ref();
	self.len() == other.len() &&
	{
	    for (x, y) in self.iter().zip(0..other.len()) {
		if x != &other[y] {return false;}
	    }
	    true
	}
    }
}

impl<T> std::hash::Hash for HeapArray<T>
where T: std::hash::Hash
{
    fn hash<H: std::hash::Hasher>(&self, state: &mut H)
    {
	self.size.hash(state);
	self.as_slice().hash(state);
    }
}

impl<T> Clone for HeapArray<T>
where T: Clone
{
    fn clone(&self) -> Self
    where T: Clone
    {
	let mut output = Self::new_uninit(self.len());
	output.drop_check = self.drop_check;

	unsafe {
	    for (i,x) in (0..self.len()).zip(self.iter())
	    {   
		ptr::put(output.as_ptr_mut().offset(i as isize), x.clone());
	    }
	}
	output
    }
}

use std::fmt;
impl<T> fmt::Debug for HeapArray<T>
where T: fmt::Debug
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result
    {
	write!(f, "{}: (", std::any::type_name::<Self>())?;
	let len = self.len();
	for (x,i) in self.iter().zip(0..len)
	{
	    write!(f, "{:?}", x)?;
	    if i < len-1 {
		write!(f, " ")?;
	    }
	}
	write!(f, ")")
    }
}