malachite_q/arithmetic/square.rs
1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::Rational;
10use malachite_base::num::arithmetic::traits::{Square, SquareAssign};
11
12impl Square for Rational {
13 type Output = Self;
14
15 /// Squares a [`Rational`], taking it by value.
16 ///
17 /// $$
18 /// f(x) = x^2.
19 /// $$
20 ///
21 /// # Worst-case complexity
22 /// $T(n) = O(n \log n \log\log n)$
23 ///
24 /// $M(n) = O(n \log n)$
25 ///
26 /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
27 ///
28 /// # Examples
29 /// ```
30 /// use malachite_base::num::arithmetic::traits::Square;
31 /// use malachite_base::num::basic::traits::Zero;
32 /// use malachite_q::Rational;
33 ///
34 /// assert_eq!(Rational::ZERO.square(), 0);
35 /// assert_eq!(Rational::from_signeds(22, 7).square().to_string(), "484/49");
36 /// assert_eq!(
37 /// Rational::from_signeds(-22, 7).square().to_string(),
38 /// "484/49"
39 /// );
40 /// ```
41 #[inline]
42 fn square(mut self) -> Self {
43 self.square_assign();
44 self
45 }
46}
47
48impl Square for &Rational {
49 type Output = Rational;
50
51 /// Squares a [`Rational`], taking it by reference.
52 ///
53 /// $$
54 /// f(x) = x^2.
55 /// $$
56 ///
57 /// # Worst-case complexity
58 /// $T(n) = O(n \log n \log\log n)$
59 ///
60 /// $M(n) = O(n \log n)$
61 ///
62 /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
63 ///
64 /// # Examples
65 /// ```
66 /// use malachite_base::num::arithmetic::traits::Square;
67 /// use malachite_base::num::basic::traits::Zero;
68 /// use malachite_q::Rational;
69 ///
70 /// assert_eq!((&Rational::ZERO).square(), 0);
71 /// assert_eq!(
72 /// (&Rational::from_signeds(22, 7)).square().to_string(),
73 /// "484/49"
74 /// );
75 /// assert_eq!(
76 /// (&Rational::from_signeds(-22, 7)).square().to_string(),
77 /// "484/49"
78 /// );
79 /// ```
80 #[inline]
81 fn square(self) -> Rational {
82 Rational {
83 sign: true,
84 numerator: (&self.numerator).square(),
85 denominator: (&self.denominator).square(),
86 }
87 }
88}
89
90impl SquareAssign for Rational {
91 /// Squares a [`Rational`] in place.
92 ///
93 /// $$
94 /// x \gets x^2.
95 /// $$
96 ///
97 /// # Worst-case complexity
98 /// $T(n) = O(n \log n \log\log n)$
99 ///
100 /// $M(n) = O(n \log n)$
101 ///
102 /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
103 ///
104 /// # Examples
105 /// ```
106 /// use malachite_base::num::arithmetic::traits::SquareAssign;
107 /// use malachite_base::num::basic::traits::Zero;
108 /// use malachite_q::Rational;
109 ///
110 /// let mut x = Rational::ZERO;
111 /// x.square_assign();
112 /// assert_eq!(x, 0);
113 ///
114 /// let mut x = Rational::from_signeds(22, 7);
115 /// x.square_assign();
116 /// assert_eq!(x.to_string(), "484/49");
117 ///
118 /// let mut x = Rational::from_signeds(-22, 7);
119 /// x.square_assign();
120 /// assert_eq!(x.to_string(), "484/49");
121 /// ```
122 fn square_assign(&mut self) {
123 self.sign = true;
124 self.numerator.square_assign();
125 self.denominator.square_assign();
126 }
127}