malachite_q/arithmetic/next_power_of_2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright © 2025 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::Rational;
use core::cmp::Ordering::*;
use malachite_base::num::arithmetic::traits::{NextPowerOf2, NextPowerOf2Assign, PowerOf2};
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::SignificantBits;
impl NextPowerOf2 for Rational {
type Output = Rational;
/// Finds the smallest power of 2 greater than or equal to a [`Rational`]. The [`Rational`] is
/// taken by value.
///
/// $f(x) = 2^{\lceil \log_2 x \rceil}$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Panics
/// Panics if `self` is less than or equal to zero.
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::NextPowerOf2;
/// use malachite_q::Rational;
///
/// assert_eq!(Rational::from(123).next_power_of_2(), 128);
/// assert_eq!(
/// Rational::from_signeds(1, 10).next_power_of_2().to_string(),
/// "1/8"
/// );
/// ```
#[inline]
fn next_power_of_2(self) -> Rational {
assert!(self > 0);
let mut exponent = i64::exact_from(self.numerator.significant_bits())
- i64::exact_from(self.denominator.significant_bits());
match self.numerator.cmp_normalized(&self.denominator) {
Equal => return self,
Greater => exponent += 1,
_ => {}
}
Rational::power_of_2(exponent)
}
}
impl NextPowerOf2 for &Rational {
type Output = Rational;
/// Finds the smallest power of 2 greater than or equal to a [`Rational`]. The [`Rational`] is
/// taken by reference.
///
/// $f(x) = 2^{\lceil \log_2 x \rceil}$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Panics
/// Panics if `self` is less than or equal to zero.
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::NextPowerOf2;
/// use malachite_q::Rational;
///
/// assert_eq!((&Rational::from(123)).next_power_of_2(), 128);
/// assert_eq!(
/// (&Rational::from_signeds(1, 10))
/// .next_power_of_2()
/// .to_string(),
/// "1/8"
/// );
/// ```
fn next_power_of_2(self) -> Rational {
assert!(*self > 0);
let mut exponent = i64::exact_from(self.numerator.significant_bits())
- i64::exact_from(self.denominator.significant_bits());
if self.numerator.cmp_normalized(&self.denominator) == Greater {
exponent += 1;
}
Rational::power_of_2(exponent)
}
}
impl NextPowerOf2Assign for Rational {
/// Finds the smallest power of 2 greater than or equal to a [`Rational`]. The [`Rational`] is
/// taken by reference.
///
/// $f(x) = 2^{\lceil \log_2 x \rceil}$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Panics
/// Panics if `self` is less than or equal to zero.
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::NextPowerOf2Assign;
/// use malachite_q::Rational;
///
/// let mut x = Rational::from(123);
/// x.next_power_of_2_assign();
/// assert_eq!(x, 128);
///
/// let mut x = Rational::from_signeds(1, 10);
/// x.next_power_of_2_assign();
/// assert_eq!(x.to_string(), "1/8");
/// ```
#[inline]
fn next_power_of_2_assign(&mut self) {
*self = (&*self).next_power_of_2();
}
}