malachite_nz/integer/arithmetic/divisible_by_power_of_2.rs
1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::integer::Integer;
10use malachite_base::num::arithmetic::traits::DivisibleByPowerOf2;
11
12impl DivisibleByPowerOf2 for &Integer {
13 /// Returns whether an [`Integer`] is divisible by $2^k$.
14 ///
15 /// $f(x, k) = (2^k|x)$.
16 ///
17 /// $f(x, k) = (\exists n \in \N : \ x = n2^k)$.
18 ///
19 /// If `self` is 0, the result is always true; otherwise, it is equivalent to
20 /// `self.trailing_zeros().unwrap() <= pow`, but more efficient.
21 ///
22 /// # Worst-case complexity
23 /// $T(n) = O(n)$
24 ///
25 /// $M(n) = O(1)$
26 ///
27 /// where $T$ is time, $M$ is additional memory, and $n$ is `min(pow, self.significant_bits())`.
28 ///
29 /// # Examples
30 /// ```
31 /// use malachite_base::num::arithmetic::traits::{DivisibleByPowerOf2, Pow};
32 /// use malachite_base::num::basic::traits::Zero;
33 /// use malachite_nz::integer::Integer;
34 ///
35 /// assert_eq!(Integer::ZERO.divisible_by_power_of_2(100), true);
36 /// assert_eq!(Integer::from(-100).divisible_by_power_of_2(2), true);
37 /// assert_eq!(Integer::from(100u32).divisible_by_power_of_2(3), false);
38 /// assert_eq!(
39 /// (-Integer::from(10u32).pow(12)).divisible_by_power_of_2(12),
40 /// true
41 /// );
42 /// assert_eq!(
43 /// (-Integer::from(10u32).pow(12)).divisible_by_power_of_2(13),
44 /// false
45 /// );
46 /// ```
47 fn divisible_by_power_of_2(self, pow: u64) -> bool {
48 self.abs.divisible_by_power_of_2(pow)
49 }
50}