malachite_nz/integer/arithmetic/
binomial_coefficient.rs

1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::integer::Integer;
10use crate::natural::Natural;
11use malachite_base::num::arithmetic::traits::{BinomialCoefficient, Parity};
12use malachite_base::num::basic::traits::One;
13
14impl BinomialCoefficient for Integer {
15    /// Computes the binomial coefficient of two [`Integer`]s, taking both by value.
16    ///
17    /// The second argument must be non-negative, but the first may be negative. If it is, the
18    /// identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
19    ///
20    /// $$
21    /// f(n, k) = \\begin{cases}
22    ///     \binom{n}{k} & \text{if} \\quad n \geq 0, \\\\
23    ///     (-1)^k \binom{-n+k-1}{k} & \text{if} \\quad n < 0.
24    /// \\end{cases}
25    /// $$
26    ///
27    /// # Worst-case complexity
28    /// TODO
29    ///
30    /// # Panics
31    /// Panics if $k$ is negative.
32    ///
33    /// # Examples
34    /// ```
35    /// use malachite_base::num::arithmetic::traits::BinomialCoefficient;
36    /// use malachite_nz::integer::Integer;
37    ///
38    /// assert_eq!(
39    ///     Integer::binomial_coefficient(Integer::from(4), Integer::from(0)),
40    ///     1
41    /// );
42    /// assert_eq!(
43    ///     Integer::binomial_coefficient(Integer::from(4), Integer::from(1)),
44    ///     4
45    /// );
46    /// assert_eq!(
47    ///     Integer::binomial_coefficient(Integer::from(4), Integer::from(2)),
48    ///     6
49    /// );
50    /// assert_eq!(
51    ///     Integer::binomial_coefficient(Integer::from(4), Integer::from(3)),
52    ///     4
53    /// );
54    /// assert_eq!(
55    ///     Integer::binomial_coefficient(Integer::from(4), Integer::from(4)),
56    ///     1
57    /// );
58    /// assert_eq!(
59    ///     Integer::binomial_coefficient(Integer::from(10), Integer::from(5)),
60    ///     252
61    /// );
62    /// assert_eq!(
63    ///     Integer::binomial_coefficient(Integer::from(100), Integer::from(50)).to_string(),
64    ///     "100891344545564193334812497256"
65    /// );
66    ///
67    /// assert_eq!(
68    ///     Integer::binomial_coefficient(Integer::from(-3), Integer::from(0)),
69    ///     1
70    /// );
71    /// assert_eq!(
72    ///     Integer::binomial_coefficient(Integer::from(-3), Integer::from(1)),
73    ///     -3
74    /// );
75    /// assert_eq!(
76    ///     Integer::binomial_coefficient(Integer::from(-3), Integer::from(2)),
77    ///     6
78    /// );
79    /// assert_eq!(
80    ///     Integer::binomial_coefficient(Integer::from(-3), Integer::from(3)),
81    ///     -10
82    /// );
83    /// ```
84    fn binomial_coefficient(n: Integer, k: Integer) -> Integer {
85        assert!(k.sign);
86        if n.sign {
87            Integer::from(Natural::binomial_coefficient(n.abs, k.abs))
88        } else {
89            let k_abs = k.abs;
90            Integer {
91                sign: k_abs.even(),
92                abs: Natural::binomial_coefficient(n.abs + &k_abs - Natural::ONE, k_abs),
93            }
94        }
95    }
96}
97
98impl<'a> BinomialCoefficient<&'a Integer> for Integer {
99    /// Computes the binomial coefficient of two [`Integer`]s, taking both by reference.
100    ///
101    /// The second argument must be non-negative, but the first may be negative. If it is, the
102    /// identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
103    ///
104    /// $$
105    /// f(n, k) = \\begin{cases}
106    ///     \binom{n}{k} & \text{if} \\quad n \geq 0, \\\\
107    ///     (-1)^k \binom{-n+k-1}{k} & \text{if} \\quad n < 0.
108    /// \\end{cases}
109    /// $$
110    ///
111    /// # Worst-case complexity
112    /// TODO
113    ///
114    /// # Panics
115    /// Panics if $k$ is negative.
116    ///
117    /// # Examples
118    /// ```
119    /// use malachite_base::num::arithmetic::traits::BinomialCoefficient;
120    /// use malachite_nz::integer::Integer;
121    ///
122    /// assert_eq!(
123    ///     Integer::binomial_coefficient(&Integer::from(4), &Integer::from(0)),
124    ///     1
125    /// );
126    /// assert_eq!(
127    ///     Integer::binomial_coefficient(&Integer::from(4), &Integer::from(1)),
128    ///     4
129    /// );
130    /// assert_eq!(
131    ///     Integer::binomial_coefficient(&Integer::from(4), &Integer::from(2)),
132    ///     6
133    /// );
134    /// assert_eq!(
135    ///     Integer::binomial_coefficient(&Integer::from(4), &Integer::from(3)),
136    ///     4
137    /// );
138    /// assert_eq!(
139    ///     Integer::binomial_coefficient(&Integer::from(4), &Integer::from(4)),
140    ///     1
141    /// );
142    /// assert_eq!(
143    ///     Integer::binomial_coefficient(&Integer::from(10), &Integer::from(5)),
144    ///     252
145    /// );
146    /// assert_eq!(
147    ///     Integer::binomial_coefficient(&Integer::from(100), &Integer::from(50)).to_string(),
148    ///     "100891344545564193334812497256"
149    /// );
150    ///
151    /// assert_eq!(
152    ///     Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(0)),
153    ///     1
154    /// );
155    /// assert_eq!(
156    ///     Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(1)),
157    ///     -3
158    /// );
159    /// assert_eq!(
160    ///     Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(2)),
161    ///     6
162    /// );
163    /// assert_eq!(
164    ///     Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(3)),
165    ///     -10
166    /// );
167    /// ```
168    fn binomial_coefficient(n: &'a Integer, k: &'a Integer) -> Integer {
169        assert!(k.sign);
170        if n.sign {
171            Integer::from(Natural::binomial_coefficient(&n.abs, &k.abs))
172        } else {
173            let k_abs = &k.abs;
174            Integer {
175                sign: k_abs.even(),
176                abs: Natural::binomial_coefficient(&(&n.abs + k_abs - Natural::ONE), k_abs),
177            }
178        }
179    }
180}