malachite_nz/natural/arithmetic/primorial.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
// Copyright © 2025 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
// Contributed to the GNU project by Marco Bodrato.
//
// Copyright © 2012, 2015, 2016 Free Software Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::natural::arithmetic::factorial::log_n_max;
use crate::natural::arithmetic::mul::product_of_limbs::limbs_product;
use crate::natural::Natural;
use crate::platform::Limb;
use alloc::vec::Vec;
use malachite_base::num::arithmetic::traits::{PowerOf2, Primorial, RotateLeftAssign};
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::conversion::traits::{ConvertibleFrom, ExactFrom, WrappingFrom};
#[cfg(feature = "32_bit_limbs")]
use malachite_base::num::factorization::prime_sieve::limbs_prime_sieve_u32;
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_base::num::factorization::prime_sieve::limbs_prime_sieve_u64;
use malachite_base::num::factorization::prime_sieve::{id_to_n, limbs_prime_sieve_size, n_to_bit};
use malachite_base::num::factorization::traits::Primes;
#[cfg(feature = "32_bit_limbs")]
const SMALL_PRIMORIAL_LIMIT: u64 = 29;
#[cfg(not(feature = "32_bit_limbs"))]
const SMALL_PRIMORIAL_LIMIT: u64 = 53;
// This is equivalent to `mpz_primorial_ui` from `mpz/primorial_ui.c`, GMP 6.2.1, where n is too
// large for the primorial of n to fit in a single limb.
#[allow(clippy::useless_conversion)]
fn limbs_primorial(n: Limb) -> Vec<Limb> {
let n_u64 = u64::from(n);
let size = usize::exact_from(n >> Limb::LOG_WIDTH);
let size = size + (size >> 1) + 1;
assert!(size >= limbs_prime_sieve_size::<Limb>(n_u64));
let mut sieve = vec![0; size];
#[cfg(feature = "32_bit_limbs")]
let count = limbs_prime_sieve_u32(&mut sieve, n_u64);
#[cfg(not(feature = "32_bit_limbs"))]
let count = limbs_prime_sieve_u64(&mut sieve, n);
let size = usize::exact_from((count + 1) / log_n_max(n) + 1);
let mut factors = vec![0; size];
let mut j = 0;
let mut prod = 6;
// Store primes from 5 to n
let max_prod = Limb::MAX / n;
let i = n_to_bit(5);
let mut index = usize::exact_from(i >> Limb::LOG_WIDTH);
let mut mask = Limb::power_of_2(i & Limb::WIDTH_MASK);
for i in i + 1..=n_to_bit(n_u64) + 1 {
if sieve[index] & mask == 0 {
let prime = Limb::wrapping_from(id_to_n(i));
if prod > max_prod {
factors[j] = prod;
j += 1;
prod = prime;
} else {
prod *= prime;
}
}
mask.rotate_left_assign(1);
if mask == 1 {
index += 1;
}
}
// j != 0
factors[j] = prod;
j += 1;
sieve.resize(j, 0);
let out_len = limbs_product(&mut sieve, &mut factors[..j]);
sieve.truncate(out_len);
sieve
}
#[cfg(feature = "32_bit_limbs")]
const SMALL_PRODUCT_OF_FIRST_N_PRIMES_LIMIT: u64 = 10;
#[cfg(not(feature = "32_bit_limbs"))]
const SMALL_PRODUCT_OF_FIRST_N_PRIMES_LIMIT: u64 = 16;
fn limbs_product_of_first_n_primes(n: usize) -> Vec<Limb> {
let mut prod: Limb = 1;
let mut factors = Vec::new();
for prime in Limb::primes().take(n) {
if let Some(p) = prod.checked_mul(prime) {
prod = p;
} else {
factors.push(prod);
prod = prime;
}
}
factors.push(prod);
let mut out = vec![0; factors.len() + 1];
let out_len = limbs_product(&mut out, &mut factors);
out.truncate(out_len);
out
}
impl Primorial for Natural {
/// Computes the primorial of a [`Natural`]: the product of all primes less than or equal to it.
///
/// The [`product_of_first_n_primes`](Natural::product_of_first_n_primes) function is similar;
/// it computes the primorial of the $n$th prime.
///
/// $$
/// f(n) = n\\# =prod_{pleq natop p\\text {prime}} p.
/// $$
///
/// $n\\# = O(e^{(1+o(1))n})$.
///
/// # Worst-case complexity
/// $T(n) = O(n \log n \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::Primorial;
/// use malachite_nz::natural::Natural;
///
/// assert_eq!(Natural::primorial(0), 1);
/// assert_eq!(Natural::primorial(1), 1);
/// assert_eq!(Natural::primorial(2), 2);
/// assert_eq!(Natural::primorial(3), 6);
/// assert_eq!(Natural::primorial(4), 6);
/// assert_eq!(Natural::primorial(5), 30);
/// assert_eq!(
/// Natural::primorial(100).to_string(),
/// "2305567963945518424753102147331756070"
/// );
/// ```
///
/// This is equivalent to `mpz_primorial_ui` from `mpz/primorial_ui.c`, GMP 6.2.1.
#[inline]
fn primorial(n: u64) -> Natural {
assert!(Limb::convertible_from(n));
if n < SMALL_PRIMORIAL_LIMIT {
Natural::from(Limb::primorial(n))
} else {
Natural::from_owned_limbs_asc(limbs_primorial(Limb::wrapping_from(n)))
}
}
/// Computes the product of the first $n$ primes.
///
/// The [`primorial`](Natural::primorial) function is similar; it computes the product of all
/// primes less than or equal to $n$.
///
/// $$
/// f(n) = p_n\\# = \prod_{k=1}^n p_n,
/// $$
/// where $p_n$ is the $n$th prime number.
///
/// $p_n\\# = O\left (\left (\frac{1}{e}k\log k\left (\frac{\log k}{e^2}k \right )^{1/\log
/// k}\right )^k\omega(1)\right )$.
///
/// This asymptotic approximation is due to [Bart
/// Michels](https://math.stackexchange.com/a/1594930).
///
/// # Worst-case complexity
/// $T(n) = O(n (\log n)^2 \log\log n)$
///
/// $M(n) = O(n \log n)$
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::Primorial;
/// use malachite_nz::natural::Natural;
///
/// assert_eq!(Natural::product_of_first_n_primes(0), 1);
/// assert_eq!(Natural::product_of_first_n_primes(1), 2);
/// assert_eq!(Natural::product_of_first_n_primes(2), 6);
/// assert_eq!(Natural::product_of_first_n_primes(3), 30);
/// assert_eq!(Natural::product_of_first_n_primes(4), 210);
/// assert_eq!(Natural::product_of_first_n_primes(5), 2310);
/// assert_eq!(
/// Natural::product_of_first_n_primes(100).to_string(),
/// "4711930799906184953162487834760260422020574773409675520188634839616415335845034221205\
/// 28925670554468197243910409777715799180438028421831503871944494399049257903072063599053\
/// 8452312528339864352999310398481791730017201031090"
/// );
/// ```
#[inline]
fn product_of_first_n_primes(n: u64) -> Natural {
assert!(Limb::convertible_from(n));
if n < SMALL_PRODUCT_OF_FIRST_N_PRIMES_LIMIT {
Natural::from(Limb::product_of_first_n_primes(n))
} else {
Natural::from_owned_limbs_asc(limbs_product_of_first_n_primes(usize::exact_from(n)))
}
}
}