malachite_nz/natural/arithmetic/
mod_power_of_2_inverse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Copyright © 2025 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::conversion::to_twos_complement_limbs::limbs_twos_complement_in_place;
use crate::natural::arithmetic::add::limbs_slice_add_limb_in_place;
use crate::natural::arithmetic::mod_power_of_2::limbs_slice_mod_power_of_2_in_place;
use crate::natural::arithmetic::mul::mul_low::limbs_mul_low_same_length;
use crate::natural::InnerNatural::{Large, Small};
use crate::natural::Natural;
use crate::platform::Limb;
use malachite_base::num::arithmetic::traits::{ModPowerOf2Inverse, Parity, ShrRound};
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::One;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::SignificantBits;
use malachite_base::rounding_modes::RoundingMode::*;

// - out should be just long enough for `pow` bits.
// - xs should have the same length as out.
// - scratch should be at least twice as long as out.
// - out should be filled with zeros.
fn limbs_mod_power_of_2_inverse(out: &mut [Limb], xs: &[Limb], pow: u64, scratch: &mut [Limb]) {
    let len = out.len();
    split_into_chunks_mut!(scratch, len, [scratch_0, scratch_1], _unused);
    let mut limb_pow = 1;
    out[0] = xs[0].mod_power_of_2_inverse(Limb::WIDTH).unwrap();
    while limb_pow < len {
        limb_pow <<= 1;
        if limb_pow > len {
            limb_pow = len;
        }
        let out_lo = &mut out[..limb_pow];
        let scratch_0_lo = &mut scratch_0[..limb_pow];
        let scratch_1_lo = &mut scratch_1[..limb_pow];
        limbs_mul_low_same_length(scratch_0_lo, out_lo, &xs[..limb_pow]);
        limbs_twos_complement_in_place(scratch_0_lo);
        limbs_slice_add_limb_in_place(scratch_0_lo, 2);
        limbs_mul_low_same_length(scratch_1_lo, scratch_0_lo, out_lo);
        out_lo.copy_from_slice(scratch_1_lo);
    }
    limbs_slice_mod_power_of_2_in_place(out, pow);
}

#[allow(clippy::unnecessary_wraps)]
fn mod_power_of_2_inverse_helper(xs: &[Limb], pow: u64) -> Option<Natural> {
    let len = xs.len();
    let mut big_scratch = vec![0; len * 3];
    let (out, scratch) = big_scratch.split_at_mut(len);
    limbs_mod_power_of_2_inverse(out, xs, pow, scratch);
    big_scratch.truncate(len);
    Some(Natural::from_owned_limbs_asc(big_scratch))
}

impl ModPowerOf2Inverse for Natural {
    type Output = Natural;

    /// Computes the multiplicative inverse of a [`Natural`] modulo $2^k$. The input must be already
    /// reduced modulo $2^k$. The [`Natural`] is taken by value.
    ///
    /// Returns `None` if $x$ is even.
    ///
    /// $f(x, k) = y$, where $x, y < 2^k$, $x$ is odd, and $xy \equiv 1 \mod 2^k$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
    ///
    /// # Panics
    /// Panics if `self` is 0 or if `self` is greater than or equal to $2^k$.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::ModPowerOf2Inverse;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(
    ///     Natural::from(3u32).mod_power_of_2_inverse(8),
    ///     Some(Natural::from(171u32))
    /// );
    /// assert_eq!(Natural::from(4u32).mod_power_of_2_inverse(8), None);
    /// ```
    fn mod_power_of_2_inverse(self, pow: u64) -> Option<Natural> {
        assert_ne!(self, 0u32);
        assert!(
            self.significant_bits() <= pow,
            "self must be reduced mod 2^pow, but {self} >= 2^{pow}"
        );
        match (self, pow) {
            (Natural::ONE, _) => Some(Natural::ONE),
            (x, _) if x.even() => None,
            (Natural(Small(x)), pow) if pow <= Limb::WIDTH => {
                x.mod_power_of_2_inverse(pow).map(Natural::from)
            }
            (Natural(Small(x)), pow) => {
                let len = usize::exact_from(pow.shr_round(Limb::LOG_WIDTH, Ceiling).0);
                let mut xs = vec![0; len];
                xs[0] = x;
                mod_power_of_2_inverse_helper(&xs, pow)
            }
            (Natural(Large(mut xs)), pow) => {
                let len = usize::exact_from(pow.shr_round(Limb::LOG_WIDTH, Ceiling).0);
                xs.resize(len, 0);
                mod_power_of_2_inverse_helper(&xs, pow)
            }
        }
    }
}

impl ModPowerOf2Inverse for &Natural {
    type Output = Natural;

    /// Computes the multiplicative inverse of a [`Natural`] modulo $2^k$. The input must be already
    /// reduced modulo $2^k$. The [`Natural`] is taken by reference.
    ///
    /// Returns `None` if $x$ is even.
    ///
    /// $f(x, k) = y$, where $x, y < 2^k$, $x$ is odd, and $xy \equiv 1 \mod 2^k$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log\log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
    ///
    /// # Panics
    /// Panics if `self` is 0 or if `self` is greater than or equal to $2^k$.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::ModPowerOf2Inverse;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(
    ///     (&Natural::from(3u32)).mod_power_of_2_inverse(8),
    ///     Some(Natural::from(171u32))
    /// );
    /// assert_eq!((&Natural::from(4u32)).mod_power_of_2_inverse(8), None);
    /// ```
    fn mod_power_of_2_inverse(self, pow: u64) -> Option<Natural> {
        assert_ne!(*self, 0u32);
        assert!(
            self.significant_bits() <= pow,
            "self must be reduced mod 2^pow, but {self} >= 2^{pow}"
        );
        match (self, pow) {
            (&Natural::ONE, _) => Some(Natural::ONE),
            (x, _) if x.even() => None,
            (Natural(Small(x)), pow) if pow <= Limb::WIDTH => {
                x.mod_power_of_2_inverse(pow).map(Natural::from)
            }
            (Natural(Small(x)), pow) => {
                let len = usize::exact_from(pow.shr_round(Limb::LOG_WIDTH, Ceiling).0);
                let mut xs = vec![0; len];
                xs[0] = *x;
                mod_power_of_2_inverse_helper(&xs, pow)
            }
            (Natural(Large(xs)), pow) => {
                let len = usize::exact_from(pow.shr_round(Limb::LOG_WIDTH, Ceiling).0);
                let mut xs = xs.clone();
                xs.resize(len, 0);
                mod_power_of_2_inverse_helper(&xs, pow)
            }
        }
    }
}