malachite_nz/natural/arithmetic/
mod_power_of_2_shl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright © 2025 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::natural::Natural;
use core::ops::{Shr, ShrAssign};
use malachite_base::num::arithmetic::traits::{
    ModPowerOf2, ModPowerOf2Assign, ModPowerOf2Shl, ModPowerOf2ShlAssign, UnsignedAbs,
};
use malachite_base::num::basic::signeds::PrimitiveSigned;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::basic::unsigneds::PrimitiveUnsigned;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::logic::traits::SignificantBits;

fn mod_power_of_2_shl_unsigned_nz<T: PrimitiveUnsigned>(x: &Natural, bits: T, pow: u64) -> Natural
where
    u64: ExactFrom<T>,
{
    assert!(
        x.significant_bits() <= pow,
        "x must be reduced mod 2^pow, but {x} >= 2^{pow}"
    );
    let bits = u64::exact_from(bits);
    if bits >= pow {
        Natural::ZERO
    } else {
        x.mod_power_of_2(pow - bits) << bits
    }
}

fn mod_power_of_2_shl_assign_unsigned_nz<T: PrimitiveUnsigned>(x: &mut Natural, bits: T, pow: u64)
where
    u64: ExactFrom<T>,
{
    assert!(
        x.significant_bits() <= pow,
        "x must be reduced mod 2^pow, but {x} >= 2^{pow}"
    );
    let bits = u64::exact_from(bits);
    if bits >= pow {
        *x = Natural::ZERO;
    } else {
        x.mod_power_of_2_assign(pow - bits);
        *x <<= bits;
    }
}

macro_rules! impl_mod_power_of_2_shl_unsigned {
    ($t:ident) => {
        impl ModPowerOf2Shl<$t> for Natural {
            type Output = Natural;

            /// Left-shifts a [`Natural`] (multiplies it by a power of 2) modulo $2^k$. The
            /// [`Natural`] must be already reduced modulo $2^k$. The [`Natural`] is taken by value.
            ///
            /// $f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
            ///
            /// # Panics
            /// Panics if `self` is greater than or equal to $2^k$.
            ///
            /// # Examples
            /// See [here](super::mod_power_of_2_shl#mod_power_of_2_shl).
            #[inline]
            fn mod_power_of_2_shl(mut self, bits: $t, pow: u64) -> Natural {
                self.mod_power_of_2_shl_assign(bits, pow);
                self
            }
        }

        impl ModPowerOf2Shl<$t> for &Natural {
            type Output = Natural;

            /// Left-shifts a [`Natural`] (multiplies it by a power of 2) modulo $2^k$. The
            /// [`Natural`] must be already reduced modulo $2^k$. The [`Natural`] is taken by
            /// reference.
            ///
            /// $f(x, n, k) = y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
            ///
            /// # Panics
            /// Panics if `self` is greater than or equal to $2^k$.
            ///
            /// # Examples
            /// See [here](super::mod_power_of_2_shl#mod_power_of_2_shl).
            #[inline]
            fn mod_power_of_2_shl(self, bits: $t, pow: u64) -> Natural {
                mod_power_of_2_shl_unsigned_nz(self, bits, pow)
            }
        }

        impl ModPowerOf2ShlAssign<$t> for Natural {
            /// Left-shifts a [`Natural`] (multiplies it by a power of 2) modulo $2^k$, in place.
            /// The [`Natural`] must be already reduced modulo $2^k$.
            ///
            /// $x \gets y$, where $x, y < 2^k$ and $2^nx \equiv y \mod 2^k$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
            ///
            /// # Panics
            /// Panics if `self` is greater than or equal to $2^k$.
            ///
            /// # Examples
            /// See [here](super::mod_power_of_2_shl#mod_power_of_2_shl_assign).
            #[inline]
            fn mod_power_of_2_shl_assign(&mut self, bits: $t, pow: u64) {
                mod_power_of_2_shl_assign_unsigned_nz(self, bits, pow);
            }
        }
    };
}
apply_to_unsigneds!(impl_mod_power_of_2_shl_unsigned);

fn mod_power_of_2_shl_signed_nz<'a, U, S: PrimitiveSigned + UnsignedAbs<Output = U>>(
    x: &'a Natural,
    bits: S,
    pow: u64,
) -> Natural
where
    &'a Natural: ModPowerOf2Shl<U, Output = Natural> + Shr<U, Output = Natural>,
{
    assert!(
        x.significant_bits() <= pow,
        "x must be reduced mod 2^pow, but {x} >= 2^{pow}"
    );
    if bits >= S::ZERO {
        x.mod_power_of_2_shl(bits.unsigned_abs(), pow)
    } else {
        x >> bits.unsigned_abs()
    }
}

fn mod_power_of_2_shl_assign_signed_nz<U, S: PrimitiveSigned + UnsignedAbs<Output = U>>(
    x: &mut Natural,
    bits: S,
    pow: u64,
) where
    Natural: ModPowerOf2ShlAssign<U> + ShrAssign<U>,
{
    assert!(
        x.significant_bits() <= pow,
        "x must be reduced mod 2^pow, but {x} >= 2^{pow}"
    );
    if bits >= S::ZERO {
        x.mod_power_of_2_shl_assign(bits.unsigned_abs(), pow);
    } else {
        *x >>= bits.unsigned_abs();
    }
}

macro_rules! impl_mod_power_of_2_shl_signed {
    ($t:ident) => {
        impl ModPowerOf2Shl<$t> for Natural {
            type Output = Natural;

            /// Left-shifts a [`Natural`] (multiplies it by a power of 2) modulo $2^k$. The
            /// [`Natural`] must be already reduced modulo $2^k$. The [`Natural`] is taken by value.
            ///
            /// $f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
            ///
            /// # Panics
            /// Panics if `self` is greater than or equal to $2^k$.
            ///
            /// # Examples
            /// See [here](super::mod_power_of_2_shl#mod_power_of_2_shl).
            #[inline]
            fn mod_power_of_2_shl(mut self, bits: $t, pow: u64) -> Natural {
                self.mod_power_of_2_shl_assign(bits, pow);
                self
            }
        }

        impl ModPowerOf2Shl<$t> for &Natural {
            type Output = Natural;

            /// Left-shifts a [`Natural`] (multiplies it by a power of 2) modulo $2^k$. The
            /// [`Natural`] must be already reduced modulo $2^k$. The [`Natural`] is taken by
            /// reference.
            ///
            /// $f(x, n, k) = y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
            ///
            /// # Panics
            /// Panics if `self` is greater than or equal to $2^k$.
            ///
            /// # Examples
            /// See [here](super::mod_power_of_2_shl#mod_power_of_2_shl).
            #[inline]
            fn mod_power_of_2_shl(self, bits: $t, pow: u64) -> Natural {
                mod_power_of_2_shl_signed_nz(self, bits, pow)
            }
        }

        impl ModPowerOf2ShlAssign<$t> for Natural {
            /// Left-shifts a [`Natural`] (multiplies it by a power of 2) modulo $2^k$, in place.
            /// The [`Natural`] must be already reduced modulo $2^k$.
            ///
            /// $x \gets y$, where $x, y < 2^k$ and $\lfloor 2^nx \rfloor \equiv y \mod 2^k$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
            ///
            /// # Panics
            /// Panics if `self` is greater than or equal to $2^k$.
            ///
            /// # Examples
            /// See [here](super::mod_power_of_2_shl#mod_power_of_2_shl_assign).
            #[inline]
            fn mod_power_of_2_shl_assign(&mut self, bits: $t, pow: u64) {
                mod_power_of_2_shl_assign_signed_nz(self, bits, pow)
            }
        }
    };
}
apply_to_signeds!(impl_mod_power_of_2_shl_signed);