malachite_nz/natural/arithmetic/
mod_power_of_2_neg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright © 2025 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::natural::Natural;
use malachite_base::num::arithmetic::traits::{
    ModPowerOf2Neg, ModPowerOf2NegAssign, NegModPowerOf2, NegModPowerOf2Assign,
};
use malachite_base::num::logic::traits::SignificantBits;

impl ModPowerOf2Neg for Natural {
    type Output = Natural;

    /// Negates a [`Natural`] modulo $2^k$. The input must be already reduced modulo $2^k$. The
    /// [`Natural`] is taken by value.
    ///
    /// $f(x, k) = y$, where $x, y < 2^k$ and $-x \equiv y \mod 2^k$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
    ///
    /// # Panics
    /// Panics if `self` is greater than or equal to $2^k$.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::ModPowerOf2Neg;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!(Natural::ZERO.mod_power_of_2_neg(5), 0);
    /// assert_eq!(Natural::ZERO.mod_power_of_2_neg(100), 0);
    /// assert_eq!(Natural::from(100u32).mod_power_of_2_neg(8), 156);
    /// assert_eq!(
    ///     Natural::from(100u32).mod_power_of_2_neg(100).to_string(),
    ///     "1267650600228229401496703205276"
    /// );
    /// ```
    #[inline]
    fn mod_power_of_2_neg(mut self, pow: u64) -> Natural {
        assert!(
            self.significant_bits() <= pow,
            "self must be reduced mod 2^pow, but {self} >= 2^{pow}"
        );
        self.neg_mod_power_of_2_assign(pow);
        self
    }
}

impl ModPowerOf2Neg for &Natural {
    type Output = Natural;

    /// Negates a [`Natural`] modulo $2^k$. The input must be already reduced modulo $2^k$. The
    /// [`Natural`] is taken by reference.
    ///
    /// $f(x, k) = y$, where $x, y < 2^k$ and $-x \equiv y \mod 2^k$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
    ///
    /// # Panics
    /// Panics if `self` is greater than or equal to $2^k$.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::ModPowerOf2Neg;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// assert_eq!((&Natural::ZERO).mod_power_of_2_neg(5), 0);
    /// assert_eq!((&Natural::ZERO).mod_power_of_2_neg(100), 0);
    /// assert_eq!((&Natural::from(100u32)).mod_power_of_2_neg(8), 156);
    /// assert_eq!(
    ///     (&Natural::from(100u32)).mod_power_of_2_neg(100).to_string(),
    ///     "1267650600228229401496703205276"
    /// );
    /// ```
    #[inline]
    fn mod_power_of_2_neg(self, pow: u64) -> Natural {
        assert!(
            self.significant_bits() <= pow,
            "self must be reduced mod 2^pow, but {self} >= 2^{pow}"
        );
        self.neg_mod_power_of_2(pow)
    }
}

impl ModPowerOf2NegAssign for Natural {
    /// Negates a [`Natural`] modulo $2^k$, in place. The input must be already reduced modulo
    /// $2^k$.
    ///
    /// $x \gets y$, where $x, y < 2^p$ and $-x \equiv y \mod 2^p$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
    ///
    /// # Panics
    /// Panics if `self` is greater than or equal to $2^k$.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::ModPowerOf2NegAssign;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::natural::Natural;
    ///
    /// let mut n = Natural::ZERO;
    /// n.mod_power_of_2_neg_assign(5);
    /// assert_eq!(n, 0);
    ///
    /// let mut n = Natural::ZERO;
    /// n.mod_power_of_2_neg_assign(100);
    /// assert_eq!(n, 0);
    ///
    /// let mut n = Natural::from(100u32);
    /// n.mod_power_of_2_neg_assign(8);
    /// assert_eq!(n, 156);
    ///
    /// let mut n = Natural::from(100u32);
    /// n.mod_power_of_2_neg_assign(100);
    /// assert_eq!(n.to_string(), "1267650600228229401496703205276");
    /// ```
    #[inline]
    fn mod_power_of_2_neg_assign(&mut self, pow: u64) {
        assert!(
            self.significant_bits() <= pow,
            "self must be reduced mod 2^pow, but {self} >= 2^{pow}"
        );
        self.neg_mod_power_of_2_assign(pow);
    }
}