malachite_nz/natural/arithmetic/mod_power_of_2_neg.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
// Copyright © 2025 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::natural::Natural;
use malachite_base::num::arithmetic::traits::{
ModPowerOf2Neg, ModPowerOf2NegAssign, NegModPowerOf2, NegModPowerOf2Assign,
};
use malachite_base::num::logic::traits::SignificantBits;
impl ModPowerOf2Neg for Natural {
type Output = Natural;
/// Negates a [`Natural`] modulo $2^k$. The input must be already reduced modulo $2^k$. The
/// [`Natural`] is taken by value.
///
/// $f(x, k) = y$, where $x, y < 2^k$ and $-x \equiv y \mod 2^k$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
///
/// # Panics
/// Panics if `self` is greater than or equal to $2^k$.
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::ModPowerOf2Neg;
/// use malachite_base::num::basic::traits::Zero;
/// use malachite_nz::natural::Natural;
///
/// assert_eq!(Natural::ZERO.mod_power_of_2_neg(5), 0);
/// assert_eq!(Natural::ZERO.mod_power_of_2_neg(100), 0);
/// assert_eq!(Natural::from(100u32).mod_power_of_2_neg(8), 156);
/// assert_eq!(
/// Natural::from(100u32).mod_power_of_2_neg(100).to_string(),
/// "1267650600228229401496703205276"
/// );
/// ```
#[inline]
fn mod_power_of_2_neg(mut self, pow: u64) -> Natural {
assert!(
self.significant_bits() <= pow,
"self must be reduced mod 2^pow, but {self} >= 2^{pow}"
);
self.neg_mod_power_of_2_assign(pow);
self
}
}
impl ModPowerOf2Neg for &Natural {
type Output = Natural;
/// Negates a [`Natural`] modulo $2^k$. The input must be already reduced modulo $2^k$. The
/// [`Natural`] is taken by reference.
///
/// $f(x, k) = y$, where $x, y < 2^k$ and $-x \equiv y \mod 2^k$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
///
/// # Panics
/// Panics if `self` is greater than or equal to $2^k$.
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::ModPowerOf2Neg;
/// use malachite_base::num::basic::traits::Zero;
/// use malachite_nz::natural::Natural;
///
/// assert_eq!((&Natural::ZERO).mod_power_of_2_neg(5), 0);
/// assert_eq!((&Natural::ZERO).mod_power_of_2_neg(100), 0);
/// assert_eq!((&Natural::from(100u32)).mod_power_of_2_neg(8), 156);
/// assert_eq!(
/// (&Natural::from(100u32)).mod_power_of_2_neg(100).to_string(),
/// "1267650600228229401496703205276"
/// );
/// ```
#[inline]
fn mod_power_of_2_neg(self, pow: u64) -> Natural {
assert!(
self.significant_bits() <= pow,
"self must be reduced mod 2^pow, but {self} >= 2^{pow}"
);
self.neg_mod_power_of_2(pow)
}
}
impl ModPowerOf2NegAssign for Natural {
/// Negates a [`Natural`] modulo $2^k$, in place. The input must be already reduced modulo
/// $2^k$.
///
/// $x \gets y$, where $x, y < 2^p$ and $-x \equiv y \mod 2^p$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `pow`.
///
/// # Panics
/// Panics if `self` is greater than or equal to $2^k$.
///
/// # Examples
/// ```
/// use malachite_base::num::arithmetic::traits::ModPowerOf2NegAssign;
/// use malachite_base::num::basic::traits::Zero;
/// use malachite_nz::natural::Natural;
///
/// let mut n = Natural::ZERO;
/// n.mod_power_of_2_neg_assign(5);
/// assert_eq!(n, 0);
///
/// let mut n = Natural::ZERO;
/// n.mod_power_of_2_neg_assign(100);
/// assert_eq!(n, 0);
///
/// let mut n = Natural::from(100u32);
/// n.mod_power_of_2_neg_assign(8);
/// assert_eq!(n, 156);
///
/// let mut n = Natural::from(100u32);
/// n.mod_power_of_2_neg_assign(100);
/// assert_eq!(n.to_string(), "1267650600228229401496703205276");
/// ```
#[inline]
fn mod_power_of_2_neg_assign(&mut self, pow: u64) {
assert!(
self.significant_bits() <= pow,
"self must be reduced mod 2^pow, but {self} >= 2^{pow}"
);
self.neg_mod_power_of_2_assign(pow);
}
}