malachite_float/constants/sqrt_2.rs
1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::Float;
10use core::cmp::Ordering;
11use malachite_base::num::basic::traits::Two;
12use malachite_base::rounding_modes::RoundingMode::{self, *};
13
14impl Float {
15 /// Returns an approximation to the square root of 2, with the given precision and rounded using
16 /// the given [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the rounded
17 /// value is less than or greater than the exact value of the constant. (Since the constant is
18 /// irrational, the rounded value is never equal to the exact value.)
19 ///
20 /// $$
21 /// x = \sqrt{2}.
22 /// $$
23 ///
24 /// The constant is irrational and algebraic.
25 ///
26 /// The output has precision `prec`.
27 ///
28 /// # Worst-case complexity
29 /// $T(n) = O(n \log n \log\log n)$
30 ///
31 /// $M(n) = O(n \log n)$
32 ///
33 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
34 ///
35 /// # Panics
36 /// Panics if `prec` is zero or if `rm` is `Exact`.
37 ///
38 /// # Examples
39 /// ```
40 /// use malachite_base::rounding_modes::RoundingMode::*;
41 /// use malachite_float::Float;
42 /// use std::cmp::Ordering::*;
43 ///
44 /// let (sqrt_2, o) = Float::sqrt_2_prec_round(100, Floor);
45 /// assert_eq!(sqrt_2.to_string(), "1.414213562373095048801688724209");
46 /// assert_eq!(o, Less);
47 ///
48 /// let (sqrt_2, o) = Float::sqrt_2_prec_round(100, Ceiling);
49 /// assert_eq!(sqrt_2.to_string(), "1.414213562373095048801688724211");
50 /// assert_eq!(o, Greater);
51 /// ```
52 #[inline]
53 pub fn sqrt_2_prec_round(prec: u64, rm: RoundingMode) -> (Self, Ordering) {
54 Self::sqrt_prec_round(Self::TWO, prec, rm)
55 }
56
57 /// Returns an approximation to the square root of 2, with the given precision and rounded to
58 /// the nearest [`Float`] of that precision. An [`Ordering`] is also returned, indicating
59 /// whether the rounded value is less than or greater than the exact value of the constant.
60 /// (Since the constant is irrational, the rounded value is never equal to the exact value.)
61 ///
62 /// $$
63 /// x = \sqrt{2}.
64 /// $$
65 ///
66 /// The constant is irrational and algebraic.
67 ///
68 /// The output has precision `prec`.
69 ///
70 /// # Worst-case complexity
71 /// $T(n) = O(n \log n \log\log n)$
72 ///
73 /// $M(n) = O(n \log n)$
74 ///
75 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
76 ///
77 /// # Panics
78 /// Panics if `prec` is zero.
79 ///
80 /// # Examples
81 /// ```
82 /// use malachite_float::Float;
83 /// use std::cmp::Ordering::*;
84 ///
85 /// let (sqrt_2, o) = Float::sqrt_2_prec(1);
86 /// assert_eq!(sqrt_2.to_string(), "1.0");
87 /// assert_eq!(o, Less);
88 ///
89 /// let (sqrt_2, o) = Float::sqrt_2_prec(10);
90 /// assert_eq!(sqrt_2.to_string(), "1.414");
91 /// assert_eq!(o, Less);
92 ///
93 /// let (sqrt_2, o) = Float::sqrt_2_prec(100);
94 /// assert_eq!(sqrt_2.to_string(), "1.414213562373095048801688724209");
95 /// assert_eq!(o, Less);
96 /// ```
97 #[inline]
98 pub fn sqrt_2_prec(prec: u64) -> (Self, Ordering) {
99 Self::sqrt_2_prec_round(prec, Nearest)
100 }
101}