malachite_float/constants/
log_2.rs

1// Copyright © 2025 Mikhail Hogrefe
2//
3// Uses code adopted from the GNU MPFR Library.
4//
5//      Copyright 1999, 2001-2024 Free Software Foundation, Inc.
6//
7//      Contributed by the AriC and Caramba projects, INRIA.
8//
9// This file is part of Malachite.
10//
11// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
12// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
13// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
14
15use crate::Float;
16use alloc::vec;
17use core::cmp::Ordering;
18use core::mem::swap;
19use malachite_base::num::arithmetic::traits::CeilingLogBase2;
20use malachite_base::num::basic::integers::PrimitiveInt;
21use malachite_base::num::basic::traits::{One, Zero};
22use malachite_base::num::conversion::traits::WrappingFrom;
23use malachite_base::rounding_modes::RoundingMode::{self, *};
24use malachite_nz::integer::Integer;
25use malachite_nz::natural::arithmetic::float_extras::float_can_round;
26use malachite_nz::platform::Limb;
27
28// Auxiliary function: Compute the terms from n1 to n2 (excluded) 3 / 4 * sum((-1) ^ n * n! ^ 2 / 2
29// ^ n / (2 * n + 1)!, n = n1...n2 - 1).
30//
31// Numerator is T[0], denominator is Q[0], Compute P[0] only when need_P is non-zero.
32//
33// Need 1 + ceil(log(n2 - n1) / log(2)) cells in T[], P[], Q[].
34//
35// This is S from const_log2.c, MPFR 4.2.0.
36fn sum(t: &mut [Integer], p: &mut [Integer], q: &mut [Integer], n1: u64, n2: u64, need_p: bool) {
37    if n2 == n1 + 1 {
38        p[0] = if n1 == 0 {
39            const { Integer::const_from_unsigned(3) }
40        } else {
41            -Integer::from(n1)
42        };
43        q[0] = ((Integer::from(n1) << 1u32) + Integer::ONE) << 2u32;
44        t[0].clone_from(&p[0]);
45    } else {
46        let m = (n1 >> 1) + (n2 >> 1) + (n1 & 1 & n2);
47        sum(t, p, q, n1, m, true);
48        let (t_head, t_tail) = t.split_first_mut().unwrap();
49        let (p_head, p_tail) = p.split_first_mut().unwrap();
50        let (q_head, q_tail) = q.split_first_mut().unwrap();
51        sum(t_tail, p_tail, q_tail, m, n2, need_p);
52        *t_head *= &q_tail[0];
53        t_tail[0] *= &*p_head;
54        *t_head += &t_tail[0];
55        if need_p {
56            *p_head *= &p_tail[0];
57        }
58        *q_head *= &q_tail[0];
59        // remove common trailing zeros if any
60        let mut tz = t_head.trailing_zeros().unwrap();
61        if tz != 0 {
62            let mut qz = q_head.trailing_zeros().unwrap();
63            if qz < tz {
64                tz = qz;
65            }
66            if need_p {
67                qz = p_head.trailing_zeros().unwrap();
68                if qz < tz {
69                    tz = qz;
70                }
71            }
72            // now tz = min(val(T), val(Q), val(P))
73            if tz != 0 {
74                *t_head >>= tz;
75                *q_head >>= tz;
76                if need_p {
77                    *p_head >>= tz;
78                }
79            }
80        }
81    }
82}
83
84impl Float {
85    /// Returns an approximation to the natural logarithm of 2, with the given precision and rounded
86    /// using the given [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the
87    /// rounded value is less than or greater than the exact value of the constant. (Since the
88    /// constant is irrational, the rounded value is never equal to the exact value.)
89    ///
90    /// $$
91    /// L = \log 2.
92    /// $$
93    ///
94    /// The constant is irrational.
95    ///
96    /// The output has precision `prec`.
97    ///
98    /// # Worst-case complexity
99    /// $T(n) = O(n (\log n)^2 \log\log n)$
100    ///
101    /// $M(n) = O(n (\log n)^2)$
102    ///
103    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
104    ///
105    /// # Panics
106    /// Panics if `prec` is zero or if `rm` is `Exact`.
107    ///
108    /// # Examples
109    /// ```
110    /// use malachite_base::rounding_modes::RoundingMode::*;
111    /// use malachite_float::Float;
112    /// use std::cmp::Ordering::*;
113    ///
114    /// let (l2, o) = Float::log_2_prec_round(100, Floor);
115    /// assert_eq!(l2.to_string(), "0.693147180559945309417232121458");
116    /// assert_eq!(o, Less);
117    ///
118    /// let (l2, o) = Float::log_2_prec_round(100, Ceiling);
119    /// assert_eq!(l2.to_string(), "0.693147180559945309417232121459");
120    /// assert_eq!(o, Greater);
121    /// ```
122    ///
123    /// This is mpfr_const_log2_internal from const_log2.c, MPFR 4.2.0.
124    pub fn log_2_prec_round(prec: u64, rm: RoundingMode) -> (Self, Ordering) {
125        let mut working_prec = prec + prec.ceiling_log_base_2() + 3;
126        let mut increment = Limb::WIDTH;
127        loop {
128            let big_n = working_prec / 3 + 1;
129            // the following are needed for error analysis (see algorithms.tex)
130            assert!(working_prec >= 3 && big_n >= 2);
131            let lg_big_n = usize::wrapping_from(big_n.ceiling_log_base_2()) + 1;
132            let mut scratch = vec![Integer::ZERO; 3 * lg_big_n];
133            split_into_chunks_mut!(scratch, lg_big_n, [t, p], q);
134            sum(t, p, q, 0, big_n, false);
135            let mut t0 = Integer::ZERO;
136            let mut q0 = Integer::ZERO;
137            swap(&mut t0, &mut t[0]);
138            swap(&mut q0, &mut q[0]);
139            let log_2 = Self::from_integer_prec(t0, working_prec).0
140                / Self::from_integer_prec(q0, working_prec).0;
141            if float_can_round(log_2.significand_ref().unwrap(), working_prec - 2, prec, rm) {
142                return Self::from_float_prec_round(log_2, prec, rm);
143            }
144            working_prec += increment;
145            increment = working_prec >> 1;
146        }
147    }
148
149    /// Returns an approximation to the natural logarithm of 2, with the given precision and rounded
150    /// to the nearest [`Float`] of that precision. An [`Ordering`] is also returned, indicating
151    /// whether the rounded value is less than or greater than the exact value of the constant.
152    /// (Since the constant is irrational, the rounded value is never equal to the exact value.)
153    ///
154    /// $$
155    /// L = \log 2.
156    /// $$
157    ///
158    /// The constant is irrational.
159    ///
160    /// The output has precision `prec`.
161    ///
162    /// # Worst-case complexity
163    /// $T(n) = O(n (\log n)^2 \log\log n)$
164    ///
165    /// $M(n) = O(n (\log n)^2)$
166    ///
167    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
168    ///
169    /// # Panics
170    /// Panics if `prec` is zero.
171    ///
172    /// # Examples
173    /// ```
174    /// use malachite_float::Float;
175    /// use std::cmp::Ordering::*;
176    ///
177    /// let (l2, o) = Float::log_2_prec(1);
178    /// assert_eq!(l2.to_string(), "0.5");
179    /// assert_eq!(o, Less);
180    ///
181    /// let (l2, o) = Float::log_2_prec(10);
182    /// assert_eq!(l2.to_string(), "0.693");
183    /// assert_eq!(o, Greater);
184    ///
185    /// let (l2, o) = Float::log_2_prec(100);
186    /// assert_eq!(l2.to_string(), "0.693147180559945309417232121458");
187    /// assert_eq!(o, Less);
188    /// ```
189    #[inline]
190    pub fn log_2_prec(prec: u64) -> (Self, Ordering) {
191        Self::log_2_prec_round(prec, Nearest)
192    }
193}