1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
use crate::{ComparableFloat, ComparableFloatRef, Float};
use core::cmp::Ordering::{self, *};

impl PartialOrd for Float {
    /// Compares two [`Float`]s.
    ///
    /// This implementation follows the IEEE 754 standard. `NaN` is not comparable to anything, not
    /// even itself. Positive zero is equal to negative zero. [`Float`]s with different precisions
    /// are equal if they represent the same numeric value.
    ///
    /// For different comparison behavior that provides a total order, consider using
    /// [`ComparableFloat`] or [`ComparableFloatRef`].
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
    /// other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{
    ///     Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, Zero,
    /// };
    /// use malachite_float::Float;
    /// use std::cmp::Ordering::*;
    ///
    /// assert_eq!(Float::NAN.partial_cmp(&Float::NAN), None);
    /// assert_eq!(Float::ZERO.partial_cmp(&Float::NEGATIVE_ZERO), Some(Equal));
    /// assert_eq!(Float::ONE.partial_cmp(&Float::one_prec(100)), Some(Equal));
    /// assert!(Float::INFINITY > Float::ONE);
    /// assert!(Float::NEGATIVE_INFINITY < Float::ONE);
    /// assert!(Float::ONE_HALF < Float::ONE);
    /// assert!(Float::ONE_HALF > Float::NEGATIVE_ONE);
    /// ```
    fn partial_cmp(&self, other: &Float) -> Option<Ordering> {
        match (self, other) {
            (float_nan!(), _) | (_, float_nan!()) => None,
            (float_infinity!(), float_infinity!())
            | (float_negative_infinity!(), float_negative_infinity!())
            | (float_either_zero!(), float_either_zero!()) => Some(Equal),
            (float_infinity!(), _) | (_, float_negative_infinity!()) => Some(Greater),
            (float_negative_infinity!(), _) | (_, float_infinity!()) => Some(Less),
            (Float(Finite { sign, .. }), float_either_zero!()) => {
                Some(if *sign { Greater } else { Less })
            }
            (float_either_zero!(), Float(Finite { sign, .. })) => {
                Some(if *sign { Less } else { Greater })
            }
            (
                Float(Finite {
                    sign: s_x,
                    exponent: e_x,
                    significand: x,
                    ..
                }),
                Float(Finite {
                    sign: s_y,
                    exponent: e_y,
                    significand: y,
                    ..
                }),
            ) => Some(s_x.cmp(s_y).then_with(|| {
                let abs_cmp = e_x.cmp(e_y).then_with(|| x.cmp_normalized_no_shift(y));
                if *s_x {
                    abs_cmp
                } else {
                    abs_cmp.reverse()
                }
            })),
        }
    }
}

impl<'a> Ord for ComparableFloatRef<'a> {
    /// Compares two [`ComparableFloatRef`]s.
    ///
    /// This implementation does not follow the IEEE 754 standard. This is how
    /// [`ComparableFloatRef`]s are ordered, least to greatest:
    ///   - Negative infinity
    ///   - Negative nonzero finite floats
    ///   - Negative zero
    ///   - NaN
    ///   - Positive zero
    ///   - Positive nonzero finite floats
    ///   - Positive infinity
    ///
    /// For different comparison behavior that follows the IEEE 754 standard, consider just using
    /// [`Float`].
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
    /// other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{
    ///     Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, Zero,
    /// };
    /// use malachite_float::{ComparableFloatRef, Float};
    /// use std::cmp::Ordering::*;
    ///
    /// assert_eq!(
    ///     ComparableFloatRef(&Float::NAN).partial_cmp(&ComparableFloatRef(&Float::NAN)),
    ///     Some(Equal)
    /// );
    /// assert!(ComparableFloatRef(&Float::ZERO) > ComparableFloatRef(&Float::NEGATIVE_ZERO));
    /// assert!(ComparableFloatRef(&Float::ONE) < ComparableFloatRef(&Float::one_prec(100)));
    /// assert!(ComparableFloatRef(&Float::INFINITY) > ComparableFloatRef(&Float::ONE));
    /// assert!(ComparableFloatRef(&Float::NEGATIVE_INFINITY) < ComparableFloatRef(&Float::ONE));
    /// assert!(ComparableFloatRef(&Float::ONE_HALF) < ComparableFloatRef(&Float::ONE));
    /// assert!(ComparableFloatRef(&Float::ONE_HALF) > ComparableFloatRef(&Float::NEGATIVE_ONE));
    /// ```
    fn cmp(&self, other: &ComparableFloatRef<'a>) -> Ordering {
        match (&self.0, &other.0) {
            (float_nan!(), float_nan!())
            | (float_infinity!(), float_infinity!())
            | (float_negative_infinity!(), float_negative_infinity!()) => Equal,
            (Float(Zero { sign: s_x }), Float(Zero { sign: s_y })) => s_x.cmp(s_y),
            (float_infinity!(), _) | (_, float_negative_infinity!()) => Greater,
            (float_negative_infinity!(), _) | (_, float_infinity!()) => Less,
            (Float(NaN | Zero { .. }), Float(Finite { sign, .. }))
            | (Float(NaN), Float(Zero { sign })) => {
                if *sign {
                    Less
                } else {
                    Greater
                }
            }
            (Float(Finite { sign, .. } | Zero { sign }), Float(NaN))
            | (Float(Finite { sign, .. }), Float(Zero { .. })) => {
                if *sign {
                    Greater
                } else {
                    Less
                }
            }
            (
                Float(Finite {
                    sign: s_x,
                    exponent: e_x,
                    precision: p_x,
                    significand: x,
                }),
                Float(Finite {
                    sign: s_y,
                    exponent: e_y,
                    precision: p_y,
                    significand: y,
                }),
            ) => s_x.cmp(s_y).then_with(|| {
                let abs_cmp = e_x
                    .cmp(e_y)
                    .then_with(|| x.cmp_normalized_no_shift(y))
                    .then_with(|| p_x.cmp(p_y));
                if *s_x {
                    abs_cmp
                } else {
                    abs_cmp.reverse()
                }
            }),
        }
    }
}

impl<'a> PartialOrd for ComparableFloatRef<'a> {
    /// Compares two [`ComparableFloatRef`]s.
    ///
    /// See the documentation for the [`Ord`] implementation.
    #[inline]
    fn partial_cmp(&self, other: &ComparableFloatRef) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for ComparableFloat {
    /// Compares two [`ComparableFloat`]s.
    ///
    /// This implementation does not follow the IEEE 754 standard. This is how [`ComparableFloat`]s
    /// are ordered, least to greatest:
    ///   - Negative infinity
    ///   - Negative nonzero finite floats
    ///   - Negative zero
    ///   - NaN
    ///   - Positive zero
    ///   - Positive nonzero finite floats
    ///   - Positive infinity
    ///
    /// For different comparison behavior that follows the IEEE 754 standard, consider just using
    /// [`Float`].
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
    /// other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::traits::{
    ///     Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, Zero,
    /// };
    /// use malachite_float::{ComparableFloat, Float};
    /// use std::cmp::Ordering::*;
    ///
    /// assert_eq!(
    ///     ComparableFloat(Float::NAN).partial_cmp(&ComparableFloat(Float::NAN)),
    ///     Some(Equal)
    /// );
    /// assert!(ComparableFloat(Float::ZERO) > ComparableFloat(Float::NEGATIVE_ZERO));
    /// assert!(ComparableFloat(Float::ONE) < ComparableFloat(Float::one_prec(100)));
    /// assert!(ComparableFloat(Float::INFINITY) > ComparableFloat(Float::ONE));
    /// assert!(ComparableFloat(Float::NEGATIVE_INFINITY) < ComparableFloat(Float::ONE));
    /// assert!(ComparableFloat(Float::ONE_HALF) < ComparableFloat(Float::ONE));
    /// assert!(ComparableFloat(Float::ONE_HALF) > ComparableFloat(Float::NEGATIVE_ONE));
    /// ```
    #[inline]
    fn cmp(&self, other: &ComparableFloat) -> Ordering {
        self.as_ref().cmp(&other.as_ref())
    }
}

impl PartialOrd for ComparableFloat {
    /// Compares two [`ComparableFloat`]s.
    ///
    /// See the documentation for the [`Ord`] implementation.
    #[inline]
    fn partial_cmp(&self, other: &ComparableFloat) -> Option<Ordering> {
        Some(self.as_ref().cmp(&other.as_ref()))
    }
}