malachite_float/constants/two_over_sqrt_pi.rs
1// Copyright © 2026 Mikhail Hogrefe
2//
3// Uses code adopted from the GNU MPFR Library.
4//
5// Copyright 1999, 2001-2024 Free Software Foundation, Inc.
6//
7// Contributed by the AriC and Caramba projects, INRIA.
8//
9// This file is part of Malachite.
10//
11// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
12// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
13// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
14
15use crate::Float;
16use core::cmp::Ordering;
17use malachite_base::rounding_modes::RoundingMode::{self, *};
18
19impl Float {
20 /// Returns an approximation of $2/\sqrt{pi}$, with the given precision and rounded using the
21 /// given [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the rounded
22 /// value is less than or greater than the exact value of the constant. (Since the constant is
23 /// irrational, the rounded value is never equal to the exact value.)
24 ///
25 /// $$
26 /// x = 2/\sqrt{pi}+\varepsilon.
27 /// $$
28 /// - If $m$ is not `Nearest`, then $|\varepsilon| < 2^{-p+1}$.
29 /// - If $m$ is `Nearest`, then $|\varepsilon| < 2^{-p}$.
30 ///
31 /// The constant is irrational and transcendental.
32 ///
33 /// The output has precision `prec`.
34 ///
35 /// # Worst-case complexity
36 /// $T(n) = O(n (\log n)^2 \log\log n)$
37 ///
38 /// $M(n) = O(n (\log n)^2)$
39 ///
40 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
41 ///
42 /// # Panics
43 /// Panics if `prec` is zero or if `rm` is `Exact`.
44 ///
45 /// # Examples
46 /// ```
47 /// use malachite_base::rounding_modes::RoundingMode::*;
48 /// use malachite_float::Float;
49 /// use std::cmp::Ordering::*;
50 ///
51 /// let (two_over_sqrt_pi, o) = Float::two_over_sqrt_pi_prec_round(100, Floor);
52 /// assert_eq!(
53 /// two_over_sqrt_pi.to_string(),
54 /// "1.12837916709551257389615890312"
55 /// );
56 /// assert_eq!(o, Less);
57 ///
58 /// let (two_over_sqrt_pi, o) = Float::two_over_sqrt_pi_prec_round(100, Ceiling);
59 /// assert_eq!(
60 /// two_over_sqrt_pi.to_string(),
61 /// "1.128379167095512573896158903122"
62 /// );
63 /// assert_eq!(o, Greater);
64 /// ```
65 #[inline]
66 pub fn two_over_sqrt_pi_prec_round(prec: u64, rm: RoundingMode) -> (Self, Ordering) {
67 let (pi, o) = Self::one_over_sqrt_pi_prec_round(prec, rm);
68 (pi << 1u32, o)
69 }
70
71 /// Returns an approximation of $2/\sqrt{pi}$, with the given precision and rounded to the
72 /// nearest [`Float`] of that precision. An [`Ordering`] is also returned, indicating whether
73 /// the rounded value is less than or greater than the exact value of the constant. (Since the
74 /// constant is irrational, the rounded value is never equal to the exact value.)
75 ///
76 /// $$
77 /// x = 2/\sqrt{pi}+\varepsilon.
78 /// $$
79 /// - $|\varepsilon| < 2^{-p}$.
80 ///
81 /// The constant is irrational and transcendental.
82 ///
83 /// The output has precision `prec`.
84 ///
85 /// # Worst-case complexity
86 /// $T(n) = O(n (\log n)^2 \log\log n)$
87 ///
88 /// $M(n) = O(n (\log n)^2)$
89 ///
90 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
91 ///
92 /// # Panics
93 /// Panics if `prec` is zero.
94 ///
95 /// # Examples
96 /// ```
97 /// use malachite_float::Float;
98 /// use std::cmp::Ordering::*;
99 ///
100 /// let (two_over_sqrt_pi, o) = Float::two_over_sqrt_pi_prec(1);
101 /// assert_eq!(two_over_sqrt_pi.to_string(), "1.0");
102 /// assert_eq!(o, Less);
103 ///
104 /// let (two_over_sqrt_pi, o) = Float::two_over_sqrt_pi_prec(10);
105 /// assert_eq!(two_over_sqrt_pi.to_string(), "1.129");
106 /// assert_eq!(o, Greater);
107 ///
108 /// let (two_over_sqrt_pi, o) = Float::two_over_sqrt_pi_prec(100);
109 /// assert_eq!(
110 /// two_over_sqrt_pi.to_string(),
111 /// "1.128379167095512573896158903122"
112 /// );
113 /// assert_eq!(o, Greater);
114 /// ```
115 #[inline]
116 pub fn two_over_sqrt_pi_prec(prec: u64) -> (Self, Ordering) {
117 Self::two_over_sqrt_pi_prec_round(prec, Nearest)
118 }
119}