malachite_float/constants/sqrt_2.rs
1// Copyright © 2026 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::Float;
10use core::cmp::Ordering;
11use malachite_base::num::basic::traits::Two;
12use malachite_base::rounding_modes::RoundingMode::{self, *};
13
14impl Float {
15 /// Returns an approximation of the square root of 2, with the given precision and rounded using
16 /// the given [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the rounded
17 /// value is less than or greater than the exact value of the constant. (Since the constant is
18 /// irrational, the rounded value is never equal to the exact value.)
19 ///
20 /// $$
21 /// x = \sqrt{2}+\varepsilon.
22 /// $$
23 /// - If $m$ is not `Nearest`, then $|\varepsilon| < 2^{-p+1}$.
24 /// - If $m$ is `Nearest`, then $|\varepsilon| < 2^{-p}$.
25 ///
26 /// The constant is irrational and algebraic.
27 ///
28 /// The output has precision `prec`.
29 ///
30 /// # Worst-case complexity
31 /// $T(n) = O(n \log n \log\log n)$
32 ///
33 /// $M(n) = O(n \log n)$
34 ///
35 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
36 ///
37 /// # Panics
38 /// Panics if `prec` is zero or if `rm` is `Exact`.
39 ///
40 /// # Examples
41 /// ```
42 /// use malachite_base::rounding_modes::RoundingMode::*;
43 /// use malachite_float::Float;
44 /// use std::cmp::Ordering::*;
45 ///
46 /// let (sqrt_2, o) = Float::sqrt_2_prec_round(100, Floor);
47 /// assert_eq!(sqrt_2.to_string(), "1.414213562373095048801688724209");
48 /// assert_eq!(o, Less);
49 ///
50 /// let (sqrt_2, o) = Float::sqrt_2_prec_round(100, Ceiling);
51 /// assert_eq!(sqrt_2.to_string(), "1.414213562373095048801688724211");
52 /// assert_eq!(o, Greater);
53 /// ```
54 #[inline]
55 pub fn sqrt_2_prec_round(prec: u64, rm: RoundingMode) -> (Self, Ordering) {
56 Self::sqrt_prec_round(Self::TWO, prec, rm)
57 }
58
59 /// Returns an approximation of the square root of 2, with the given precision and rounded to
60 /// the nearest [`Float`] of that precision. An [`Ordering`] is also returned, indicating
61 /// whether the rounded value is less than or greater than the exact value of the constant.
62 /// (Since the constant is irrational, the rounded value is never equal to the exact value.)
63 ///
64 /// $$
65 /// x = \sqrt{2}+\varepsilon.
66 /// $$
67 /// - $|\varepsilon| < 2^{-p}$.
68 ///
69 /// The constant is irrational and algebraic.
70 ///
71 /// The output has precision `prec`.
72 ///
73 /// # Worst-case complexity
74 /// $T(n) = O(n \log n \log\log n)$
75 ///
76 /// $M(n) = O(n \log n)$
77 ///
78 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
79 ///
80 /// # Panics
81 /// Panics if `prec` is zero.
82 ///
83 /// # Examples
84 /// ```
85 /// use malachite_float::Float;
86 /// use std::cmp::Ordering::*;
87 ///
88 /// let (sqrt_2, o) = Float::sqrt_2_prec(1);
89 /// assert_eq!(sqrt_2.to_string(), "1.0");
90 /// assert_eq!(o, Less);
91 ///
92 /// let (sqrt_2, o) = Float::sqrt_2_prec(10);
93 /// assert_eq!(sqrt_2.to_string(), "1.414");
94 /// assert_eq!(o, Less);
95 ///
96 /// let (sqrt_2, o) = Float::sqrt_2_prec(100);
97 /// assert_eq!(sqrt_2.to_string(), "1.414213562373095048801688724209");
98 /// assert_eq!(o, Less);
99 /// ```
100 #[inline]
101 pub fn sqrt_2_prec(prec: u64) -> (Self, Ordering) {
102 Self::sqrt_2_prec_round(prec, Nearest)
103 }
104}