malachite_float/constants/prime_constant.rs
1// Copyright © 2026 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::Float;
10use core::cmp::Ordering;
11use malachite_base::num::factorization::primes::prime_indicator_sequence_less_than_or_equal_to;
12use malachite_base::rounding_modes::RoundingMode::{self, *};
13
14impl Float {
15 /// Returns an approximation of the prime constant, with the given precision and rounded using
16 /// the given [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the rounded
17 /// value is less than or greater than the exact value of the constant. (Since the constant is
18 /// irrational, the rounded value is never equal to the exact value.)
19 ///
20 /// The prime constant is the real number whose $n$th bit is prime if and only if $n$ is prime.
21 /// That is,
22 /// $$
23 /// \rho = \sum_{p\ \text{prime}\}2^{-p}+\varepsilon.
24 /// $$
25 /// - If $m$ is not `Nearest`, then $|\varepsilon| < 2^{-p-1}$.
26 /// - If $m$ is `Nearest`, then $|\varepsilon| < 2^{-p-2}$.
27 ///
28 /// The constant is irrational. It is unknown whether it is transcendental; see
29 /// <https://mathoverflow.net/questions/114905>.
30 ///
31 /// The output has precision `prec`.
32 ///
33 /// # Worst-case complexity
34 /// $T(n) = O(n)$
35 ///
36 /// $M(n) = O(n)$
37 ///
38 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
39 ///
40 /// # Panics
41 /// Panics if `prec` is zero or if `rm` is `Exact`.
42 ///
43 /// # Examples
44 /// ```
45 /// use malachite_base::rounding_modes::RoundingMode::*;
46 /// use malachite_float::Float;
47 /// use std::cmp::Ordering::*;
48 ///
49 /// let (pc, o) = Float::prime_constant_prec_round(100, Floor);
50 /// assert_eq!(pc.to_string(), "0.4146825098511116602481096221542");
51 /// assert_eq!(o, Less);
52 ///
53 /// let (pc, o) = Float::prime_constant_prec_round(100, Ceiling);
54 /// assert_eq!(pc.to_string(), "0.4146825098511116602481096221546");
55 /// assert_eq!(o, Greater);
56 /// ```
57 pub fn prime_constant_prec_round(prec: u64, rm: RoundingMode) -> (Self, Ordering) {
58 // Strictly speaking, this call violates the preconditions for
59 // `non_dyadic_from_bits_prec_round`, because the iterator passed in is finite. But since we
60 // know exactly how many bits `non_dyadic_from_bits_prec_round` will read, we can get away
61 // with this.
62 Self::non_dyadic_from_bits_prec_round(
63 prime_indicator_sequence_less_than_or_equal_to(if rm == Nearest {
64 prec + 2
65 } else {
66 prec + 1
67 }),
68 prec,
69 rm,
70 )
71 }
72
73 /// Returns an approximation of the prime constant, with the given precision and rounded to the
74 /// nearest [`Float`] of that precision. An [`Ordering`] is also returned, indicating whether
75 /// the rounded value is less than or greater than the exact value of the constant. (Since the
76 /// constant is irrational, the rounded value is never equal to the exact value.)
77 ///
78 /// The prime constant is the real number whose $n$th bit is prime if and only if $n$ is prime.
79 /// That is,
80 /// $$
81 /// \rho = \sum_{p\ \text{prime}\}2^{-p}+\varepsilon.
82 /// $$
83 /// - $|\varepsilon| < 2^{-p-2}$.
84 ///
85 /// The constant is irrational. It is unknown whether it is transcendental; see
86 /// <https://mathoverflow.net/questions/114905>.
87 ///
88 /// The output has precision `prec`.
89 ///
90 /// # Worst-case complexity
91 /// $T(n) = O(n)$
92 ///
93 /// $M(n) = O(n)$
94 ///
95 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
96 ///
97 /// # Panics
98 /// Panics if `prec` is zero.
99 ///
100 /// # Examples
101 /// ```
102 /// use malachite_float::Float;
103 /// use std::cmp::Ordering::*;
104 ///
105 /// let (pc, o) = Float::prime_constant_prec(1);
106 /// assert_eq!(pc.to_string(), "0.5");
107 /// assert_eq!(o, Greater);
108 ///
109 /// let (pc, o) = Float::prime_constant_prec(10);
110 /// assert_eq!(pc.to_string(), "0.4146");
111 /// assert_eq!(o, Less);
112 ///
113 /// let (pc, o) = Float::prime_constant_prec(100);
114 /// assert_eq!(pc.to_string(), "0.4146825098511116602481096221542");
115 /// assert_eq!(o, Less);
116 /// ```
117 #[inline]
118 pub fn prime_constant_prec(prec: u64) -> (Self, Ordering) {
119 Self::prime_constant_prec_round(prec, Nearest)
120 }
121}