Skip to main content

malachite_float/constants/
one_over_sqrt_pi.rs

1// Copyright © 2026 Mikhail Hogrefe
2//
3// Uses code adopted from the GNU MPFR Library.
4//
5//      Copyright 1999, 2001-2024 Free Software Foundation, Inc.
6//
7//      Contributed by the AriC and Caramba projects, INRIA.
8//
9// This file is part of Malachite.
10//
11// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
12// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
13// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
14
15use crate::Float;
16use core::cmp::Ordering;
17use malachite_base::num::arithmetic::traits::ReciprocalSqrt;
18use malachite_base::num::basic::integers::PrimitiveInt;
19use malachite_base::rounding_modes::RoundingMode::{self, *};
20use malachite_nz::natural::arithmetic::float_extras::float_can_round;
21use malachite_nz::platform::Limb;
22
23impl Float {
24    /// Returns an approximation of $1/\sqrt{\pi}$, with the given precision and rounded using the
25    /// given [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the rounded
26    /// value is less than or greater than the exact value of the constant. (Since the constant is
27    /// irrational, the rounded value is never equal to the exact value.)
28    ///
29    /// $$
30    /// x = 1/\sqrt{\pi}+\varepsilon.
31    /// $$
32    /// - If $m$ is not `Nearest`, then $|\varepsilon| < 2^{-p}$.
33    /// - If $m$ is `Nearest`, then $|\varepsilon| < 2^{-p-1}$.
34    ///
35    /// The constant is irrational and transcendental.
36    ///
37    /// The output has precision `prec`.
38    ///
39    /// # Worst-case complexity
40    /// $T(n) = O(n (\log n)^2 \log\log n)$
41    ///
42    /// $M(n) = O(n (\log n)^2)$
43    ///
44    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
45    ///
46    /// # Panics
47    /// Panics if `prec` is zero or if `rm` is `Exact`.
48    ///
49    /// # Examples
50    /// ```
51    /// use malachite_base::rounding_modes::RoundingMode::*;
52    /// use malachite_float::Float;
53    /// use std::cmp::Ordering::*;
54    ///
55    /// let (one_over_sqrt_pi, o) = Float::one_over_sqrt_pi_prec_round(100, Floor);
56    /// assert_eq!(
57    ///     one_over_sqrt_pi.to_string(),
58    ///     "0.56418958354775628694807945156"
59    /// );
60    /// assert_eq!(o, Less);
61    ///
62    /// let (one_over_sqrt_pi, o) = Float::one_over_sqrt_pi_prec_round(100, Ceiling);
63    /// assert_eq!(
64    ///     one_over_sqrt_pi.to_string(),
65    ///     "0.564189583547756286948079451561"
66    /// );
67    /// assert_eq!(o, Greater);
68    /// ```
69    pub fn one_over_sqrt_pi_prec_round(prec: u64, rm: RoundingMode) -> (Self, Ordering) {
70        let mut working_prec = prec + 10;
71        let mut increment = Limb::WIDTH;
72        loop {
73            let one_over_sqrt_pi = Self::pi_prec_round(working_prec, Floor).0.reciprocal_sqrt();
74            if float_can_round(
75                one_over_sqrt_pi.significand_ref().unwrap(),
76                working_prec - 2,
77                prec,
78                rm,
79            ) {
80                return Self::from_float_prec_round(one_over_sqrt_pi, prec, rm);
81            }
82            working_prec += increment;
83            increment = working_prec >> 1;
84        }
85    }
86
87    /// Returns an approximation of $1/\sqrt{\pi}$, with the given precision and rounded to the
88    /// nearest [`Float`] of that precision. An [`Ordering`] is also returned, indicating whether
89    /// the rounded value is less than or greater than the exact value of the constant. (Since the
90    /// constant is irrational, the rounded value is never equal to the exact value.)
91    ///
92    /// $$
93    /// x = 1/\sqrt{\pi}+\varepsilon.
94    /// $$
95    /// - $|\varepsilon| < 2^{-p-1}$.
96    ///
97    /// The constant is irrational and transcendental.
98    ///
99    /// The output has precision `prec`.
100    ///
101    /// # Worst-case complexity
102    /// $T(n) = O(n (\log n)^2 \log\log n)$
103    ///
104    /// $M(n) = O(n (\log n)^2)$
105    ///
106    /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
107    ///
108    /// # Panics
109    /// Panics if `prec` is zero.
110    ///
111    /// # Examples
112    /// ```
113    /// use malachite_float::Float;
114    /// use std::cmp::Ordering::*;
115    ///
116    /// let (one_over_sqrt_pi, o) = Float::one_over_sqrt_pi_prec(1);
117    /// assert_eq!(one_over_sqrt_pi.to_string(), "0.5");
118    /// assert_eq!(o, Less);
119    ///
120    /// let (one_over_sqrt_pi, o) = Float::one_over_sqrt_pi_prec(10);
121    /// assert_eq!(one_over_sqrt_pi.to_string(), "0.564");
122    /// assert_eq!(o, Greater);
123    ///
124    /// let (one_over_sqrt_pi, o) = Float::one_over_sqrt_pi_prec(100);
125    /// assert_eq!(
126    ///     one_over_sqrt_pi.to_string(),
127    ///     "0.564189583547756286948079451561"
128    /// );
129    /// assert_eq!(o, Greater);
130    /// ```
131    #[inline]
132    pub fn one_over_sqrt_pi_prec(prec: u64) -> (Self, Ordering) {
133        Self::one_over_sqrt_pi_prec_round(prec, Nearest)
134    }
135}