malachite_float/constants/mod.rs
1// Copyright © 2026 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9/// Functions for approximating Gauss's constant, $G=1/\mathrm{AGM}(1,\sqrt{2})$.
10pub mod gauss_constant;
11/// Functions for approximating the lemniscate constant $\varpi=\pi G$, where $G$ is Gauss's
12/// constant.
13pub mod lemniscate_constant;
14/// Functions for approximating $\ln 2$.
15pub mod ln_2;
16/// Functions for approximating $\log_2 e$.
17pub mod log_2_e;
18/// Functions for approximating $1/\pi$.
19pub mod one_over_pi;
20/// Functions for approximating $1/\sqrt{\pi}$.
21pub mod one_over_sqrt_pi;
22/// Functions for approximating $1/\sqrt{\tau}=1/\sqrt{2\pi}$.
23pub mod one_over_sqrt_tau;
24/// Functions for approximating $\varphi$, the golden ratio.
25pub mod phi;
26/// Functions for approximating $\pi$.
27pub mod pi;
28/// Functions for approximating $\pi/2$.
29pub mod pi_over_2;
30/// Functions for approximating $\pi/3$.
31pub mod pi_over_3;
32/// Functions for approximating $\pi/4$.
33pub mod pi_over_4;
34/// Functions for approximating $\pi/6$.
35pub mod pi_over_6;
36/// Functions for approximating $\pi/8$.
37pub mod pi_over_8;
38/// Functions for approximating the prime constant (the constant whose $n$th bit is 1 if and only if
39/// $n$ is prime).
40pub mod prime_constant;
41/// Functions for approximating the Prouhet-Thue-Morse constant (the constant whose bits are the
42/// Thue-Morse sequence).
43pub mod prouhet_thue_morse_constant;
44/// Functions for approximating $\sqrt{2}$.
45pub mod sqrt_2;
46/// Functions for approximating $\sqrt{2}/2=\sqrt{1/2}=1/\sqrt{2}$.
47pub mod sqrt_2_over_2;
48/// Functions for approximating $\sqrt{3}$.
49pub mod sqrt_3;
50/// Functions for approximating $\sqrt{3}/3=\sqrt{1/3}=1/\sqrt{3}$.
51pub mod sqrt_3_over_3;
52/// Functions for approximating $\sqrt{\pi}$.
53pub mod sqrt_pi;
54/// Functions for approximating $\tau=2\pi$.
55pub mod tau;
56/// Functions for approximating $2/\pi$.
57pub mod two_over_pi;
58/// Functions for approximating $2/\sqrt{\pi}$.
59pub mod two_over_sqrt_pi;