malachite_float/constants/phi.rs
1// Copyright © 2026 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::Float;
10use core::cmp::Ordering::{self, *};
11use malachite_base::num::basic::traits::{One, Two};
12use malachite_base::rounding_modes::RoundingMode::{self, *};
13
14impl Float {
15 /// Returns an approximation of the golden ratio, with the given precision and rounded using the
16 /// given [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the rounded
17 /// value is less than or greater than the exact value of the constant. (Since the constant is
18 /// irrational, the rounded value is never equal to the exact value.)
19 ///
20 /// $$
21 /// \varphi = \frac{1+\sqrt{2}}{2}+\varepsilon.
22 /// $$
23 /// - If $m$ is not `Nearest`, then $|\varepsilon| < 2^{-p}$.
24 /// - If $m$ is `Nearest`, then $|\varepsilon| < 2^{-p-1}$.
25 ///
26 /// The constant is irrational and algebraic.
27 ///
28 /// The output has precision `prec`.
29 ///
30 /// # Worst-case complexity
31 /// $T(n) = O(n \log n \log\log n)$
32 ///
33 /// $M(n) = O(n \log n)$
34 ///
35 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
36 ///
37 /// # Panics
38 /// Panics if `prec` is zero or if `rm` is `Exact`.
39 ///
40 /// # Examples
41 /// ```
42 /// use malachite_base::rounding_modes::RoundingMode::*;
43 /// use malachite_float::Float;
44 /// use std::cmp::Ordering::*;
45 ///
46 /// let (phi, o) = Float::phi_prec_round(100, Floor);
47 /// assert_eq!(phi.to_string(), "1.618033988749894848204586834364");
48 /// assert_eq!(o, Less);
49 ///
50 /// let (phi, o) = Float::phi_prec_round(100, Ceiling);
51 /// assert_eq!(phi.to_string(), "1.618033988749894848204586834366");
52 /// assert_eq!(o, Greater);
53 /// ```
54 #[inline]
55 pub fn phi_prec_round(prec: u64, rm: RoundingMode) -> (Self, Ordering) {
56 if prec == 1 {
57 match rm {
58 Floor | Down => (Self::ONE, Less),
59 Ceiling | Up | Nearest => (Self::TWO, Greater),
60 Exact => panic!("Inexact float square root"),
61 }
62 } else {
63 let (sqrt_5, o) =
64 Self::sqrt_prec_round(const { Self::const_from_unsigned(5) }, prec, rm);
65 ((sqrt_5 + Self::ONE) >> 1u32, o)
66 }
67 }
68
69 /// Returns an approximation of the golden ratio, with the given precision and rounded to the
70 /// nearest [`Float`] of that precision. An [`Ordering`] is also returned, indicating whether
71 /// the rounded value is less than or greater than the exact value of the constant. (Since the
72 /// constant is irrational, the rounded value is never equal to the exact value.)
73 ///
74 /// $$
75 /// \varphi = \frac{1+\sqrt{2}}{2}+\varepsilon.
76 /// $$
77 /// - $|\varepsilon| < 2^{-p}$.
78 ///
79 /// The constant is irrational and algebraic.
80 ///
81 /// The output has precision `prec`.
82 ///
83 /// # Worst-case complexity
84 /// $T(n) = O(n \log n \log\log n)$
85 ///
86 /// $M(n) = O(n \log n)$
87 ///
88 /// where $T$ is time, $M$ is additional memory, and $n$ is `prec`.
89 ///
90 /// # Panics
91 /// Panics if `prec` is zero.
92 ///
93 /// # Examples
94 /// ```
95 /// use malachite_float::Float;
96 /// use std::cmp::Ordering::*;
97 ///
98 /// let (phi, o) = Float::phi_prec(1);
99 /// assert_eq!(phi.to_string(), "2.0");
100 /// assert_eq!(o, Greater);
101 ///
102 /// let (phi, o) = Float::phi_prec(10);
103 /// assert_eq!(phi.to_string(), "1.617");
104 /// assert_eq!(o, Less);
105 ///
106 /// let (phi, o) = Float::phi_prec(100);
107 /// assert_eq!(phi.to_string(), "1.618033988749894848204586834366");
108 /// assert_eq!(o, Greater);
109 /// ```
110 #[inline]
111 pub fn phi_prec(prec: u64) -> (Self, Ordering) {
112 Self::phi_prec_round(prec, Nearest)
113 }
114}