malachite_float/comparison/partial_cmp_rational.rs
1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
10use crate::{Float, significand_bits};
11use core::cmp::Ordering::{self, *};
12use malachite_base::num::arithmetic::traits::Sign;
13use malachite_base::num::conversion::traits::ExactFrom;
14use malachite_q::Rational;
15
16impl PartialOrd<Rational> for Float {
17 /// Compares a [`Float`] to a [`Rational`].
18 ///
19 /// NaN is not comparable to any [`Rational`]. $\infty$ is greater than any [`Rational`], and
20 /// $-\infty$ is less. Both the [`Float`] zero and the [`Float`] negative zero are equal to the
21 /// [`Rational`] zero.
22 ///
23 /// # Worst-case complexity
24 /// $T(n) = O(n \log n \log\log n)$
25 ///
26 /// $M(n) = O(n \log n)$
27 ///
28 /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
29 /// other.significant_bits())`.
30 ///
31 /// # Examples
32 /// ```
33 /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
34 /// use malachite_float::Float;
35 /// use malachite_q::Rational;
36 ///
37 /// assert!(Float::from(80) < Rational::from(100));
38 /// assert!(Float::from(-80) > Rational::from(-100));
39 /// assert!(Float::INFINITY > Rational::from(100));
40 /// assert!(Float::NEGATIVE_INFINITY < Rational::from(-100));
41 /// assert!(Float::from(1.0f64 / 3.0) < Rational::from_unsigneds(1u8, 3));
42 /// ```
43 fn partial_cmp(&self, other: &Rational) -> Option<Ordering> {
44 match (self, other) {
45 (float_nan!(), _) => None,
46 (float_infinity!(), _) => Some(Greater),
47 (float_negative_infinity!(), _) => Some(Less),
48 (float_either_zero!(), y) => 0u32.partial_cmp(y),
49 (
50 Self(Finite {
51 sign: s_x,
52 exponent: e_x,
53 significand: significand_x,
54 ..
55 }),
56 y,
57 ) => Some(if *y == 0u32 {
58 if *s_x { Greater } else { Less }
59 } else {
60 let s_cmp = s_x.cmp(&(*y > 0));
61 if s_cmp != Equal {
62 return Some(s_cmp);
63 }
64 let e_x = i64::from(*e_x);
65 let exp_cmp = (e_x - 1).cmp(&other.floor_log_base_2_abs());
66 if exp_cmp != Equal {
67 return Some(if *s_x { exp_cmp } else { exp_cmp.reverse() });
68 }
69 let shift = e_x - i64::exact_from(significand_bits(significand_x));
70 let abs_shift = shift.unsigned_abs();
71 let prod_cmp = match shift.sign() {
72 Equal => (significand_x * other.denominator_ref()).cmp(other.numerator_ref()),
73 Greater => ((significand_x * other.denominator_ref()) << abs_shift)
74 .cmp(other.numerator_ref()),
75 Less => {
76 let n_trailing_zeros = significand_x.trailing_zeros().unwrap();
77 if abs_shift <= n_trailing_zeros {
78 ((significand_x >> abs_shift) * other.denominator_ref())
79 .cmp(other.numerator_ref())
80 } else {
81 ((significand_x >> n_trailing_zeros) * other.denominator_ref())
82 .cmp(&(other.numerator_ref() << (abs_shift - n_trailing_zeros)))
83 }
84 }
85 };
86 if *s_x { prod_cmp } else { prod_cmp.reverse() }
87 }),
88 }
89 }
90}
91
92impl PartialOrd<Float> for Rational {
93 /// Compares an [`Rational`] to a [`Float`].
94 ///
95 /// No [`Rational`] is comparable to NaN. Every [`Rational`] is smaller than $\infty$ and
96 /// greater than $-\infty$. The [`Rational`] zero is equal to both the [`Float`] zero and the
97 /// [`Float`] negative zero.
98 ///
99 /// # Worst-case complexity
100 /// $T(n) = O(n \log n \log\log n)$
101 ///
102 /// $M(n) = O(n \log n)$
103 ///
104 /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
105 /// other.significant_bits())`.
106 ///
107 /// # Examples
108 /// ```
109 /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
110 /// use malachite_float::Float;
111 /// use malachite_q::Rational;
112 ///
113 /// assert!(Rational::from(100) > Float::from(80));
114 /// assert!(Rational::from(-100) < Float::from(-80));
115 /// assert!(Rational::from(100) < Float::INFINITY);
116 /// assert!(Rational::from(-100) > Float::NEGATIVE_INFINITY);
117 /// assert!(Rational::from_unsigneds(1u8, 3) > Float::from(1.0f64 / 3.0));
118 /// ```
119 #[inline]
120 fn partial_cmp(&self, other: &Float) -> Option<Ordering> {
121 other.partial_cmp(self).map(Ordering::reverse)
122 }
123}