malachite_float/comparison/partial_cmp_abs_rational.rs
1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::InnerFloat::{Finite, Infinity, NaN, Zero};
10use crate::{Float, significand_bits};
11use core::cmp::Ordering::{self, *};
12use malachite_base::num::arithmetic::traits::Sign;
13use malachite_base::num::comparison::traits::PartialOrdAbs;
14use malachite_base::num::conversion::traits::ExactFrom;
15use malachite_q::Rational;
16
17impl PartialOrdAbs<Rational> for Float {
18 /// Compares the absolute values of a [`Float`] and a [`Rational`].
19 ///
20 /// NaN is not comparable to any [`Rational`]. $\infty$ and $-\infty$ are greater in absolute
21 /// value than any [`Rational`]. Both the [`Float`] zero and the [`Float`] negative zero are
22 /// equal to the [`Rational`] zero.
23 ///
24 /// # Worst-case complexity
25 /// $T(n) = O(n \log n \log\log n)$
26 ///
27 /// $M(n) = O(n \log n)$
28 ///
29 /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
30 /// other.significant_bits())`.
31 ///
32 /// # Examples
33 /// ```
34 /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
35 /// use malachite_base::num::comparison::traits::PartialOrdAbs;
36 /// use malachite_float::Float;
37 /// use malachite_q::Rational;
38 ///
39 /// assert!(Float::from(80).lt_abs(&Rational::from(100)));
40 /// assert!(Float::from(-80).lt_abs(&Rational::from(-100)));
41 /// assert!(Float::INFINITY.gt_abs(&Rational::from(100)));
42 /// assert!(Float::NEGATIVE_INFINITY.gt_abs(&Rational::from(-100)));
43 /// assert!(Float::from(1.0f64 / 3.0).lt_abs(&Rational::from_unsigneds(1u8, 3)));
44 /// ```
45 fn partial_cmp_abs(&self, other: &Rational) -> Option<Ordering> {
46 match (self, other) {
47 (float_nan!(), _) => None,
48 (float_either_infinity!(), _) => Some(Greater),
49 (float_either_zero!(), y) => Some(if *y == 0 { Equal } else { Less }),
50 (
51 Self(Finite {
52 exponent: e_x,
53 significand: significand_x,
54 ..
55 }),
56 y,
57 ) => Some(if *y == 0u32 {
58 Greater
59 } else {
60 let e_x = i64::from(*e_x);
61 let exp_cmp = (e_x - 1).cmp(&y.floor_log_base_2_abs());
62 if exp_cmp != Equal {
63 return Some(exp_cmp);
64 }
65 let shift = e_x - i64::exact_from(significand_bits(significand_x));
66 let abs_shift = shift.unsigned_abs();
67 match shift.sign() {
68 Equal => (significand_x * other.denominator_ref()).cmp(other.numerator_ref()),
69 Greater => ((significand_x * other.denominator_ref()) << abs_shift)
70 .cmp(other.numerator_ref()),
71 Less => {
72 let n_trailing_zeros = significand_x.trailing_zeros().unwrap();
73 if abs_shift <= n_trailing_zeros {
74 ((significand_x >> abs_shift) * other.denominator_ref())
75 .cmp(other.numerator_ref())
76 } else {
77 ((significand_x >> n_trailing_zeros) * other.denominator_ref())
78 .cmp(&(other.numerator_ref() << (abs_shift - n_trailing_zeros)))
79 }
80 }
81 }
82 }),
83 }
84 }
85}
86
87impl PartialOrdAbs<Float> for Rational {
88 /// Compares the absolute values of a [`Rational`] and a [`Float`].
89 ///
90 /// No [`Rational`] is comparable to NaN. Every [`Rational`] is smaller in absolute value than
91 /// $\infty$ and $-\infty$. The [`Rational`] zero is equal to both the [`Float`] zero and the
92 /// [`Float`] negative zero.
93 ///
94 /// # Worst-case complexity
95 /// $T(n) = O(n \log n \log\log n)$
96 ///
97 /// $M(n) = O(n \log n)$
98 ///
99 /// where $T$ is time, $M$ is additional memory, and $n$ is `max(self.significant_bits(),
100 /// other.significant_bits())`.
101 ///
102 /// # Examples
103 /// ```
104 /// use malachite_base::num::basic::traits::{Infinity, NegativeInfinity};
105 /// use malachite_base::num::comparison::traits::PartialOrdAbs;
106 /// use malachite_float::Float;
107 /// use malachite_q::Rational;
108 ///
109 /// assert!(Rational::from(100).gt_abs(&Float::from(80)));
110 /// assert!(Rational::from(-100).gt_abs(&Float::from(-80)));
111 /// assert!(Rational::from(100).lt_abs(&Float::INFINITY));
112 /// assert!(Rational::from(-100).lt_abs(&Float::NEGATIVE_INFINITY));
113 /// assert!(Rational::from_unsigneds(1u8, 3).gt_abs(&Float::from(1.0f64 / 3.0)));
114 /// ```
115 #[inline]
116 fn partial_cmp_abs(&self, other: &Float) -> Option<Ordering> {
117 other.partial_cmp_abs(self).map(Ordering::reverse)
118 }
119}