```
pub trait BitAccess {
// Required methods
fn get_bit(&self, index: u64) -> bool;
fn set_bit(&mut self, index: u64);
fn clear_bit(&mut self, index: u64);
// Provided methods
fn assign_bit(&mut self, index: u64, bit: bool) { ... }
fn flip_bit(&mut self, index: u64) { ... }
}
```

## Expand description

Defines functions that access or modify individual bits in a number.

## Required Methods§

## Provided Methods§

source#### fn assign_bit(&mut self, index: u64, bit: bool)

#### fn assign_bit(&mut self, index: u64, bit: bool)

Sets the bit at `index`

to whichever value `bit`

is.

##### Worst-case complexity

$T(n) = O(\max(T_S(n), T_C(n)))$,

$M(n) = O(\max(M_S(n), M_C(n)))$

where $T$ is time, $M$ is additional memory, $T_S$ and $M_S$ are the complexities of
`set_bit`

, and $T_C$ and $M_C$ are the complexities of
`clear_bit`

.

##### Panics

source#### fn flip_bit(&mut self, index: u64)

#### fn flip_bit(&mut self, index: u64)

Sets the bit at `index`

to the opposite of its original value.

##### Worst-case complexity

$T(n) = O(T_G(n) + \max(T_S(n), T_C(n)))$,

$M(n) = O(M_G(n) + \max(M_S(n), M_C(n)))$

where $T$ is time, $M$ is additional memory, $T_G$ and $M_G$ are the complexities of
`get_bit`

, $T_S$ and $M_S$ are the complexities of
`set_bit`

, and $T_C$ and $M_C$ are the complexities of
`clear_bit`

.

##### Panics

## Implementations on Foreign Types§

source§### impl BitAccess for i8

### impl BitAccess for i8

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of a signed primitive integer is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are `true`

if the value is negative, and `false`

otherwise.

If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $f(n, i) = (b_i = 1)$.

If $n < 0$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where

- $W$ is the type’s width
- for all $i$, $b_i\in \{0, 1\}$, and $b_i = 1$ for $i \geq W$.

Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 1.

Setting bits beyond the type’s width is disallowed if the number is non-negative.

If $n \geq 0$ and $j \neq W - 1$, let $$ n = \sum_{i=0}^{W-1} 2^{b_i}; $$ but if $n < 0$ or $j = W - 1$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}, \end{cases} $$ where $n < 0$ or $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n \geq 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 0.

Clearing bits beyond the type’s width is disallowed if the number is negative.

If $n \geq 0$ or $j = W - 1$, let $$ n = \sum_{i=0}^{W-1} 2^{b_i}; $$ but if $n < 0$ or $j = W - 1$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$ and $W$ is the width of the type. Then $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}, \end{cases} $$ where $n \geq 0$ or $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n < 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§### impl BitAccess for i16

### impl BitAccess for i16

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of a signed primitive integer is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are `true`

if the value is negative, and `false`

otherwise.

If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $f(n, i) = (b_i = 1)$.

If $n < 0$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where

- $W$ is the type’s width
- for all $i$, $b_i\in \{0, 1\}$, and $b_i = 1$ for $i \geq W$.

Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 1.

Setting bits beyond the type’s width is disallowed if the number is non-negative.

If $n \geq 0$ and $j \neq W - 1$, let $$ n = \sum_{i=0}^{W-1} 2^{b_i}; $$ but if $n < 0$ or $j = W - 1$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}, \end{cases} $$ where $n < 0$ or $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n \geq 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 0.

Clearing bits beyond the type’s width is disallowed if the number is negative.

If $n \geq 0$ or $j = W - 1$, let $$ n = \sum_{i=0}^{W-1} 2^{b_i}; $$ but if $n < 0$ or $j = W - 1$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$ and $W$ is the width of the type. Then $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}, \end{cases} $$ where $n \geq 0$ or $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n < 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§### impl BitAccess for i32

### impl BitAccess for i32

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of a signed primitive integer is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are `true`

if the value is negative, and `false`

otherwise.

If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $f(n, i) = (b_i = 1)$.

If $n < 0$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where

- $W$ is the type’s width
- for all $i$, $b_i\in \{0, 1\}$, and $b_i = 1$ for $i \geq W$.

Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 1.

Setting bits beyond the type’s width is disallowed if the number is non-negative.

If $n \geq 0$ and $j \neq W - 1$, let $$ n = \sum_{i=0}^{W-1} 2^{b_i}; $$ but if $n < 0$ or $j = W - 1$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}, \end{cases} $$ where $n < 0$ or $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n \geq 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 0.

Clearing bits beyond the type’s width is disallowed if the number is negative.

If $n \geq 0$ or $j = W - 1$, let $$ n = \sum_{i=0}^{W-1} 2^{b_i}; $$ but if $n < 0$ or $j = W - 1$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$ and $W$ is the width of the type. Then $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}, \end{cases} $$ where $n \geq 0$ or $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n < 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§### impl BitAccess for i64

### impl BitAccess for i64

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of a signed primitive integer is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are `true`

if the value is negative, and `false`

otherwise.

If $n < 0$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where

- $W$ is the type’s width
- for all $i$, $b_i\in \{0, 1\}$, and $b_i = 1$ for $i \geq W$.

Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 1.

Setting bits beyond the type’s width is disallowed if the number is non-negative.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

`self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 0.

Clearing bits beyond the type’s width is disallowed if the number is negative.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n < 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§### impl BitAccess for i128

### impl BitAccess for i128

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of a signed primitive integer is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are `true`

if the value is negative, and `false`

otherwise.

If $n < 0$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where

- $W$ is the type’s width
- for all $i$, $b_i\in \{0, 1\}$, and $b_i = 1$ for $i \geq W$.

Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 1.

Setting bits beyond the type’s width is disallowed if the number is non-negative.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

`self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 0.

Clearing bits beyond the type’s width is disallowed if the number is negative.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n < 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§### impl BitAccess for isize

### impl BitAccess for isize

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of a signed primitive integer is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are `true`

if the value is negative, and `false`

otherwise.

If $n < 0$, let $$ 2^W + n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where

- $W$ is the type’s width
- for all $i$, $b_i\in \{0, 1\}$, and $b_i = 1$ for $i \geq W$.

Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 1.

Setting bits beyond the type’s width is disallowed if the number is non-negative.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

`self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of a signed primitive integer to 0.

Clearing bits beyond the type’s width is disallowed if the number is negative.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $n < 0$ and $i \geq W$, where $n$ is `self`

, $i$ is `index`

and $W$ is
the width of the type.

##### Examples

See here.

source§### impl BitAccess for u8

### impl BitAccess for u8

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are false.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, to 1.

Setting bits beyond the type’s width is disallowed.

Let $$ n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}, \end{cases} $$ where $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $i \geq W$, where $i$ is `index`

and $W$ is `$t::WIDTH`

.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, to 0.

Clearing bits beyond the type’s width is allowed; since those bits are already
`false`

, clearing them does nothing.

Let $$ n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}. \end{cases} $$

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§### impl BitAccess for u16

### impl BitAccess for u16

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are false.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, to 1.

Setting bits beyond the type’s width is disallowed.

Let $$ n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}, \end{cases} $$ where $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $i \geq W$, where $i$ is `index`

and $W$ is `$t::WIDTH`

.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, to 0.

Clearing bits beyond the type’s width is allowed; since those bits are already
`false`

, clearing them does nothing.

Let $$ n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}. \end{cases} $$

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§### impl BitAccess for u32

### impl BitAccess for u32

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

Determines whether the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, is 0 or 1.

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are false.

Let $$ n = \sum_{i=0}^\infty 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$; so finitely many of the bits are 1, and the rest are 0. Then $f(n, j) = (b_j = 1)$.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, to 1.

Setting bits beyond the type’s width is disallowed.

Let $$ n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}, \end{cases} $$ where $j < W$.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $i \geq W$, where $i$ is `index`

and $W$ is `$t::WIDTH`

.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in its binary expansion, to 0.

Clearing bits beyond the type’s width is allowed; since those bits are already
`false`

, clearing them does nothing.

Let $$ n = \sum_{i=0}^{W-1} 2^{b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$, and $W$ is the width of the type. Then $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}. \end{cases} $$

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§### impl BitAccess for u64

### impl BitAccess for u64

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are false.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Setting bits beyond the type’s width is disallowed.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $i \geq W$, where $i$ is `index`

and $W$ is `$t::WIDTH`

.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

`false`

, clearing them does nothing.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§### impl BitAccess for u128

### impl BitAccess for u128

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are false.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Setting bits beyond the type’s width is disallowed.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $i \geq W$, where $i$ is `index`

and $W$ is `$t::WIDTH`

.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

`false`

, clearing them does nothing.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§### impl BitAccess for usize

### impl BitAccess for usize

source§#### fn get_bit(&self, index: u64) -> bool

#### fn get_bit(&self, index: u64) -> bool

`false`

means 0 and `true`

means 1. Getting bits beyond the type’s width is allowed;
those bits are false.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.

source§#### fn set_bit(&mut self, index: u64)

#### fn set_bit(&mut self, index: u64)

Setting bits beyond the type’s width is disallowed.

##### Worst-case complexity

Constant time and additional memory.

##### Panics

Panics if $i \geq W$, where $i$ is `index`

and $W$ is `$t::WIDTH`

.

##### Examples

See here.

source§#### fn clear_bit(&mut self, index: u64)

#### fn clear_bit(&mut self, index: u64)

`false`

, clearing them does nothing.

##### Worst-case complexity

Constant time and additional memory.

##### Examples

See here.