malachite_base/num/basic/
floats.rs

1// Copyright © 2025 Mikhail Hogrefe
2//
3// This file is part of Malachite.
4//
5// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
6// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
7// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
8
9use crate::comparison::traits::{Max, Min};
10use crate::named::Named;
11use crate::num::arithmetic::traits::{
12    Abs, AbsAssign, AddMul, AddMulAssign, Ceiling, CeilingAssign, CeilingLogBase2,
13    CeilingLogBasePowerOf2, CheckedLogBase2, CheckedLogBasePowerOf2, Floor, FloorAssign,
14    FloorLogBase2, FloorLogBasePowerOf2, IsPowerOf2, Ln, NegAssign, NextPowerOf2,
15    NextPowerOf2Assign, Pow, PowAssign, PowerOf2, Reciprocal, ReciprocalAssign, Sign, Sqrt,
16    SqrtAssign, Square, SquareAssign, SubMul, SubMulAssign,
17};
18use crate::num::basic::traits::{
19    Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, PrimeConstant,
20    ThueMorseConstant, Two, Zero,
21};
22use crate::num::comparison::traits::PartialOrdAbs;
23use crate::num::conversion::traits::{
24    ConvertibleFrom, ExactInto, IntegerMantissaAndExponent, IsInteger, RawMantissaAndExponent,
25    RoundingFrom, RoundingInto, SciMantissaAndExponent, WrappingFrom,
26};
27use crate::num::float::FmtRyuString;
28use crate::num::logic::traits::{BitAccess, LowMask, SignificantBits, TrailingZeros};
29use core::cmp::Ordering::*;
30use core::fmt::{Debug, Display, LowerExp, UpperExp};
31use core::iter::{Product, Sum};
32use core::num::FpCategory;
33use core::ops::{
34    Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
35};
36use core::panic::RefUnwindSafe;
37use core::str::FromStr;
38
39/// This trait defines functions on primitive float types: [`f32`] and [`f64`].
40///
41/// Many of the functions here concern exponents and mantissas. We define three ways to express a
42/// float, each with its own exponent and mantissa. In the following, let $x$ be an arbitrary
43/// positive, finite, non-zero, non-NaN float. Let $M$ and $E$ be the mantissa width and exponent
44/// width of the floating point type; for [`f32`]s, this is 23 and 8, and for [`f64`]s it's 52 and
45/// 11.
46///
47/// In the following we assume that $x$ is positive, but you can easily extend these definitions to
48/// negative floats by first taking their absolute value.
49///
50/// # raw form
51/// The raw exponent and raw mantissa are the actual bit patterns used to represent the components
52/// of $x$. The raw exponent $e_r$ is an integer in $[0, 2^E-2]$ and the raw mantissa $m_r$ is an
53/// integer in $[0, 2^M-1]$. Since we are dealing with a nonzero $x$, we forbid $e_r$ and $m_r$ from
54/// both being zero. We have
55/// $$
56/// x = \\begin{cases}
57///     2^{2-2^{E-1}-M}m_r & \text{if} \quad e_r = 0, \\\\
58///     2^{e_r-2^{E-1}+1}(2^{-M}m_r+1) & \textrm{otherwise},
59/// \\end{cases}
60/// $$
61/// $$
62/// e_r = \\begin{cases}
63///     0 & \text{if} \quad x < 2^{2-2^{E-1}}, \\\\
64///     \lfloor \log_2 x \rfloor + 2^{E-1} - 1 & \textrm{otherwise},
65/// \\end{cases}
66/// $$
67/// $$
68/// m_r = \\begin{cases}
69///     2^{M+2^{E-1}-2}x & \text{if} \quad x < 2^{2-2^{E-1}}, \\\\
70///     2^M \left ( \frac{x}{2^{\lfloor \log_2 x \rfloor}}-1\right ) & \textrm{otherwise}.
71/// \\end{cases}
72/// $$
73///
74/// # scientific form
75/// We can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1
76/// \leq m_s < 2$. If $x$ is a valid float, the scientific mantissa $m_s$ is always exactly
77/// representable as a float of the same type. We have
78/// $$
79/// x = 2^{e_s}m_s,
80/// $$
81/// $$
82/// e_s = \lfloor \log_2 x \rfloor,
83/// $$
84/// $$
85/// m_s = \frac{x}{2^{\lfloor \log_2 x \rfloor}}.
86/// $$
87///
88/// # integer form
89/// We can also write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. We
90/// have
91/// $$
92/// x = 2^{e_i}m_i,
93/// $$
94/// $e_i$ is the unique integer such that $x/2^{e_i}$is an odd integer, and
95/// $$
96/// m_i = \frac{x}{2^{e_i}}.
97/// $$
98pub trait PrimitiveFloat:
99    'static
100    + Abs<Output = Self>
101    + AbsAssign
102    + Add<Output = Self>
103    + AddAssign<Self>
104    + AddMul<Output = Self>
105    + AddMulAssign<Self, Self>
106    + Ceiling<Output = Self>
107    + CeilingAssign
108    + CeilingLogBase2<Output = i64>
109    + CeilingLogBasePowerOf2<u64, Output = i64>
110    + CheckedLogBase2<Output = i64>
111    + CheckedLogBasePowerOf2<u64, Output = i64>
112    + ConvertibleFrom<u8>
113    + ConvertibleFrom<u16>
114    + ConvertibleFrom<u32>
115    + ConvertibleFrom<u64>
116    + ConvertibleFrom<u128>
117    + ConvertibleFrom<usize>
118    + ConvertibleFrom<i8>
119    + ConvertibleFrom<i16>
120    + ConvertibleFrom<i32>
121    + ConvertibleFrom<i64>
122    + ConvertibleFrom<i128>
123    + ConvertibleFrom<isize>
124    + Copy
125    + Debug
126    + Default
127    + Display
128    + Div<Output = Self>
129    + DivAssign
130    + Floor<Output = Self>
131    + FloorAssign
132    + FloorLogBase2<Output = i64>
133    + FloorLogBasePowerOf2<u64, Output = i64>
134    + FmtRyuString
135    + From<f32>
136    + FromStr
137    + Infinity
138    + IntegerMantissaAndExponent<u64, i64>
139    + Into<f64>
140    + IsInteger
141    + IsPowerOf2
142    + Ln
143    + LowerExp
144    + Min
145    + Max
146    + Mul<Output = Self>
147    + MulAssign<Self>
148    + Named
149    + NaN
150    + NegativeInfinity
151    + NegativeZero
152    + Neg<Output = Self>
153    + NegAssign
154    + NegativeOne
155    + NextPowerOf2<Output = Self>
156    + NextPowerOf2Assign
157    + One
158    + PartialEq<Self>
159    + PartialOrd<Self>
160    + PartialOrdAbs<Self>
161    + Pow<i64, Output = Self>
162    + Pow<Self, Output = Self>
163    + PowAssign<i64>
164    + PowAssign<Self>
165    + PowerOf2<i64>
166    + PowerOf2<u64>
167    + PrimeConstant
168    + Product
169    + RawMantissaAndExponent<u64, u64>
170    + Reciprocal<Output = Self>
171    + ReciprocalAssign
172    + RefUnwindSafe
173    + Rem<Output = Self>
174    + RemAssign<Self>
175    + RoundingFrom<u8>
176    + RoundingFrom<u16>
177    + RoundingFrom<u32>
178    + RoundingFrom<u64>
179    + RoundingFrom<u128>
180    + RoundingFrom<usize>
181    + RoundingFrom<i8>
182    + RoundingFrom<i16>
183    + RoundingFrom<i32>
184    + RoundingFrom<i64>
185    + RoundingFrom<i128>
186    + RoundingFrom<isize>
187    + RoundingInto<u8>
188    + RoundingInto<u16>
189    + RoundingInto<u32>
190    + RoundingInto<u64>
191    + RoundingInto<u128>
192    + RoundingInto<usize>
193    + RoundingInto<i8>
194    + RoundingInto<i16>
195    + RoundingInto<i32>
196    + RoundingInto<i64>
197    + RoundingInto<i128>
198    + RoundingInto<isize>
199    + SciMantissaAndExponent<Self, i64>
200    + Sign
201    + Sized
202    + Sqrt<Output = Self>
203    + SqrtAssign
204    + Square<Output = Self>
205    + SquareAssign
206    + Sub<Output = Self>
207    + SubAssign<Self>
208    + SubMul<Output = Self>
209    + SubMulAssign<Self, Self>
210    + Sum<Self>
211    + ThueMorseConstant
212    + Two
213    + UpperExp
214    + Zero
215{
216    /// The number of bits taken up by the type.
217    ///
218    /// This is $M+E+1$. The three terms in the sum correspond to the width of the mantissa, the
219    /// width of the exponent, and the sign bit.
220    /// - For [`f32`]s, this is 32.
221    /// - For [`f64`]s, this is 64.
222    const WIDTH: u64;
223    /// The number of bits taken up by the exponent.
224    /// - For [`f32`]s, this is 8.
225    /// - For [`f64`]s, this is 11.
226    const EXPONENT_WIDTH: u64 = Self::WIDTH - Self::MANTISSA_WIDTH - 1;
227    /// The number of bits taken up by the mantissa.
228    /// - For [`f32`]s, this is 23.
229    /// - For [`f64`]s, this is 52.
230    const MANTISSA_WIDTH: u64;
231    /// The smallest possible exponent of a float in the normal range. Any floats with smaller
232    /// exponents are subnormal and thus have reduced precision. This is $2-2^{E-1}$.
233    /// - For [`f32`]s, this is -126.
234    /// - For [`f64`]s, this is -1022.
235    const MIN_NORMAL_EXPONENT: i64 = -(1 << (Self::EXPONENT_WIDTH - 1)) + 2;
236    /// The smallest possible exponent of a float. This is $2-2^{E-1}-M$.
237    /// - For [`f32`]s, this is -149.
238    /// - For [`f64`]s, this is -1074.
239    const MIN_EXPONENT: i64 = Self::MIN_NORMAL_EXPONENT - (Self::MANTISSA_WIDTH as i64);
240    /// The largest possible exponent of a float. This is $2^{E-1}-1$.
241    /// - For [`f32`]s, this is 127.
242    /// - For [`f64`]s, this is 1023.
243    const MAX_EXPONENT: i64 = (1 << (Self::EXPONENT_WIDTH - 1)) - 1;
244    /// The smallest positive float. This is $2^{2-2^{E-1}-M}$.
245    /// - For [`f32`]s, this is $2^{-149}$, or `1.0e-45`.
246    /// - For [`f64`]s, this is $2^{-1074}$, or `5.0e-324`.
247    const MIN_POSITIVE_SUBNORMAL: Self;
248    /// The largest float in the subnormal range. This is $2^{2-2^{E-1}-M}(2^M-1)$.
249    /// - For [`f32`]s, this is $2^{-149}(2^{23}-1)$, or `1.1754942e-38`.
250    /// - For [`f64`]s, this is $2^{-1074}(2^{52}-1)$, or `2.225073858507201e-308`.
251    const MAX_SUBNORMAL: Self;
252    /// The smallest positive normal float. This is $2^{2-2^{E-1}}$.
253    /// - For [`f32`]s, this is $2^{-126}$, or `1.1754944e-38`.
254    /// - For [`f64`]s, this is $2^{-1022}$, or `2.2250738585072014e-308`.
255    const MIN_POSITIVE_NORMAL: Self;
256    /// The largest finite float. This is $2^{2^{E-1}-1}(2-2^{-M})$.
257    /// - For [`f32`]s, this is $2^{127}(2-2^{-23})$, or `3.4028235e38`.
258    /// - For [`f64`]s, this is $2^{1023}(2-2^{-52})$, or `1.7976931348623157e308`.
259    const MAX_FINITE: Self;
260    /// The smallest positive integer that cannot be represented as a float. This is $2^{M+1}+1$.
261    /// - For [`f32`]s, this is $2^{24}+1$, or 16777217.
262    /// - For [`f64`]s, this is $2^{53}+1$, or 9007199254740993.
263    const SMALLEST_UNREPRESENTABLE_UINT: u64;
264    /// If you list all floats in increasing order, excluding NaN and giving negative and positive
265    /// zero separate adjacent spots, this will be index of the last element, positive infinity. It
266    /// is $2^{M+1}(2^E-1)+1$.
267    /// - For [`f32`]s, this is $2^{32}-2^{24}+1$, or 4278190081.
268    /// - For [`f64`]s, this is $2^{64}-2^{53}+1$, or 18437736874454810625.
269    const LARGEST_ORDERED_REPRESENTATION: u64;
270
271    fn is_nan(self) -> bool;
272
273    fn is_infinite(self) -> bool;
274
275    fn is_finite(self) -> bool;
276
277    fn is_normal(self) -> bool;
278
279    fn is_sign_positive(self) -> bool;
280
281    fn is_sign_negative(self) -> bool;
282
283    fn classify(self) -> FpCategory;
284
285    fn to_bits(self) -> u64;
286
287    fn from_bits(v: u64) -> Self;
288
289    /// Tests whether `self` is negative zero.
290    ///
291    /// # Worst-case complexity
292    /// Constant time and additional memory.
293    ///
294    /// # Examples
295    /// ```
296    /// use malachite_base::num::basic::floats::PrimitiveFloat;
297    ///
298    /// assert!((-0.0).is_negative_zero());
299    /// assert!(!0.0.is_negative_zero());
300    /// assert!(!1.0.is_negative_zero());
301    /// assert!(!f32::NAN.is_negative_zero());
302    /// assert!(!f32::INFINITY.is_negative_zero());
303    /// ```
304    #[inline]
305    fn is_negative_zero(self) -> bool {
306        self.sign() == Less && self == Self::ZERO
307    }
308
309    /// If `self` is negative zero, returns positive zero; otherwise, returns `self`.
310    ///
311    /// # Worst-case complexity
312    /// Constant time and additional memory.
313    ///
314    /// # Examples
315    /// ```
316    /// use malachite_base::num::basic::floats::PrimitiveFloat;
317    /// use malachite_base::num::float::NiceFloat;
318    ///
319    /// assert_eq!(NiceFloat((-0.0).abs_negative_zero()), NiceFloat(0.0));
320    /// assert_eq!(NiceFloat(0.0.abs_negative_zero()), NiceFloat(0.0));
321    /// assert_eq!(NiceFloat(1.0.abs_negative_zero()), NiceFloat(1.0));
322    /// assert_eq!(NiceFloat((-1.0).abs_negative_zero()), NiceFloat(-1.0));
323    /// assert_eq!(NiceFloat(f32::NAN.abs_negative_zero()), NiceFloat(f32::NAN));
324    /// ```
325    #[inline]
326    fn abs_negative_zero(self) -> Self {
327        if self == Self::ZERO { Self::ZERO } else { self }
328    }
329
330    /// If `self` is negative zero, replaces it with positive zero; otherwise, leaves `self`
331    /// unchanged.
332    ///
333    /// # Worst-case complexity
334    /// Constant time and additional memory.
335    ///
336    /// # Examples
337    /// ```
338    /// use malachite_base::num::basic::floats::PrimitiveFloat;
339    /// use malachite_base::num::float::NiceFloat;
340    ///
341    /// let mut f = -0.0;
342    /// f.abs_negative_zero_assign();
343    /// assert_eq!(NiceFloat(f), NiceFloat(0.0));
344    ///
345    /// let mut f = 0.0;
346    /// f.abs_negative_zero_assign();
347    /// assert_eq!(NiceFloat(f), NiceFloat(0.0));
348    ///
349    /// let mut f = 1.0;
350    /// f.abs_negative_zero_assign();
351    /// assert_eq!(NiceFloat(f), NiceFloat(1.0));
352    ///
353    /// let mut f = -1.0;
354    /// f.abs_negative_zero_assign();
355    /// assert_eq!(NiceFloat(f), NiceFloat(-1.0));
356    ///
357    /// let mut f = f32::NAN;
358    /// f.abs_negative_zero_assign();
359    /// assert_eq!(NiceFloat(f), NiceFloat(f32::NAN));
360    /// ```
361    #[inline]
362    fn abs_negative_zero_assign(&mut self) {
363        if *self == Self::ZERO {
364            *self = Self::ZERO;
365        }
366    }
367
368    /// Returns the smallest float larger than `self`.
369    ///
370    /// Passing `-0.0` returns `0.0`; passing `NaN` or positive infinity panics.
371    ///
372    /// # Worst-case complexity
373    /// Constant time and additional memory.
374    ///
375    /// # Panics
376    /// Panics if `self` is `NaN` or positive infinity.
377    ///
378    /// # Examples
379    /// ```
380    /// use malachite_base::num::basic::floats::PrimitiveFloat;
381    /// use malachite_base::num::float::NiceFloat;
382    ///
383    /// assert_eq!(NiceFloat((-0.0f32).next_higher()), NiceFloat(0.0));
384    /// assert_eq!(NiceFloat(0.0f32.next_higher()), NiceFloat(1.0e-45));
385    /// assert_eq!(NiceFloat(1.0f32.next_higher()), NiceFloat(1.0000001));
386    /// assert_eq!(NiceFloat((-1.0f32).next_higher()), NiceFloat(-0.99999994));
387    /// ```
388    fn next_higher(self) -> Self {
389        assert!(!self.is_nan());
390        if self.sign() == Greater {
391            assert_ne!(self, Self::INFINITY);
392            Self::from_bits(self.to_bits() + 1)
393        } else if self == Self::ZERO {
394            // negative zero -> positive zero
395            Self::ZERO
396        } else {
397            Self::from_bits(self.to_bits() - 1)
398        }
399    }
400
401    /// Returns the largest float smaller than `self`.
402    ///
403    /// Passing `0.0` returns `-0.0`; passing `NaN` or negative infinity panics.
404    ///
405    /// # Worst-case complexity
406    /// Constant time and additional memory.
407    ///
408    /// # Panics
409    /// Panics if `self` is `NaN` or negative infinity.
410    ///
411    /// # Examples
412    /// ```
413    /// use malachite_base::num::basic::floats::PrimitiveFloat;
414    /// use malachite_base::num::float::NiceFloat;
415    ///
416    /// assert_eq!(NiceFloat(0.0f32.next_lower()), NiceFloat(-0.0));
417    /// assert_eq!(NiceFloat((-0.0f32).next_lower()), NiceFloat(-1.0e-45));
418    /// assert_eq!(NiceFloat(1.0f32.next_lower()), NiceFloat(0.99999994));
419    /// assert_eq!(NiceFloat((-1.0f32).next_lower()), NiceFloat(-1.0000001));
420    /// ```
421    fn next_lower(self) -> Self {
422        assert!(!self.is_nan());
423        if self.sign() == Less {
424            assert_ne!(self, Self::NEGATIVE_INFINITY);
425            Self::from_bits(self.to_bits() + 1)
426        } else if self == Self::ZERO {
427            // positive zero -> negative zero
428            Self::NEGATIVE_ZERO
429        } else {
430            Self::from_bits(self.to_bits() - 1)
431        }
432    }
433
434    /// Maps `self` to an integer. The map preserves ordering, and adjacent floats are mapped to
435    /// adjacent integers.
436    ///
437    /// Negative infinity is mapped to 0, and positive infinity is mapped to the largest value,
438    /// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION). Negative
439    /// and positive zero are mapped to distinct adjacent values. Passing in `NaN` panics.
440    ///
441    /// The inverse operation is
442    /// [`from_ordered_representation`](PrimitiveFloat::from_ordered_representation).
443    ///
444    /// # Worst-case complexity
445    /// Constant time and additional memory.
446    ///
447    /// # Panics
448    /// Panics if `self` is `NaN`.
449    ///
450    /// # Examples
451    /// ```
452    /// use malachite_base::num::basic::floats::PrimitiveFloat;
453    /// use malachite_base::num::basic::traits::NegativeInfinity;
454    ///
455    /// assert_eq!(f32::NEGATIVE_INFINITY.to_ordered_representation(), 0);
456    /// assert_eq!((-0.0f32).to_ordered_representation(), 2139095040);
457    /// assert_eq!(0.0f32.to_ordered_representation(), 2139095041);
458    /// assert_eq!(1.0f32.to_ordered_representation(), 3204448257);
459    /// assert_eq!(f32::INFINITY.to_ordered_representation(), 4278190081);
460    /// ```
461    fn to_ordered_representation(self) -> u64 {
462        assert!(!self.is_nan());
463        let bits = self.to_bits();
464        if self.sign() == Greater {
465            (u64::low_mask(Self::EXPONENT_WIDTH) << Self::MANTISSA_WIDTH) + bits + 1
466        } else {
467            (u64::low_mask(Self::EXPONENT_WIDTH + 1) << Self::MANTISSA_WIDTH) - bits
468        }
469    }
470
471    /// Maps a non-negative integer, less than or equal to
472    /// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION), to a
473    /// float. The map preserves ordering, and adjacent integers are mapped to adjacent floats.
474    ///
475    /// Zero is mapped to negative infinity, and
476    /// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION) is mapped
477    /// to positive infinity. Negative and positive zero are produced by two distinct adjacent
478    /// integers. `NaN` is never produced.
479    ///
480    /// The inverse operation is
481    /// [`to_ordered_representation`](PrimitiveFloat::to_ordered_representation).
482    ///
483    /// # Worst-case complexity
484    /// Constant time and additional memory.
485    ///
486    /// # Panics
487    /// Panics if `self` is greater than
488    /// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION).
489    ///
490    /// # Examples
491    /// ```
492    /// use malachite_base::num::basic::floats::PrimitiveFloat;
493    /// use malachite_base::num::basic::traits::NegativeInfinity;
494    ///
495    /// assert_eq!(f32::from_ordered_representation(0), f32::NEGATIVE_INFINITY);
496    /// assert_eq!(f32::from_ordered_representation(2139095040), -0.0f32);
497    /// assert_eq!(f32::from_ordered_representation(2139095041), 0.0f32);
498    /// assert_eq!(f32::from_ordered_representation(3204448257), 1.0f32);
499    /// assert_eq!(f32::from_ordered_representation(4278190081), f32::INFINITY);
500    /// ```
501    fn from_ordered_representation(n: u64) -> Self {
502        let zero_exp = u64::low_mask(Self::EXPONENT_WIDTH) << Self::MANTISSA_WIDTH;
503        let f = if n <= zero_exp {
504            Self::from_bits((u64::low_mask(Self::EXPONENT_WIDTH + 1) << Self::MANTISSA_WIDTH) - n)
505        } else {
506            let f = Self::from_bits(n - zero_exp - 1);
507            assert_eq!(f.sign(), Greater);
508            f
509        };
510        assert!(!f.is_nan());
511        f
512    }
513
514    /// Returns the precision of a nonzero finite floating-point number.
515    ///
516    /// The precision is the number of significant bits of the integer mantissa. For example, the
517    /// positive floats with precision 1 are the powers of 2, those with precision 2 are 3 times a
518    /// power of 2, those with precision 3 are 5 or 7 times a power of 2, and so on.
519    ///
520    /// # Worst-case complexity
521    /// Constant time and additional memory.
522    ///
523    /// # Panics
524    /// Panics if `self` is zero, infinite, or `NaN`.
525    ///
526    /// # Examples
527    /// ```
528    /// use malachite_base::num::basic::floats::PrimitiveFloat;
529    ///
530    /// assert_eq!(1.0.precision(), 1);
531    /// assert_eq!(2.0.precision(), 1);
532    /// assert_eq!(3.0.precision(), 2);
533    /// assert_eq!(1.5.precision(), 2);
534    /// assert_eq!(1.234f32.precision(), 23);
535    /// ```
536    fn precision(self) -> u64 {
537        assert!(self.is_finite());
538        assert!(self != Self::ZERO);
539        let (mut mantissa, exponent) = self.raw_mantissa_and_exponent();
540        if exponent == 0 {
541            mantissa.significant_bits() - TrailingZeros::trailing_zeros(mantissa)
542        } else {
543            mantissa.set_bit(Self::MANTISSA_WIDTH);
544            Self::MANTISSA_WIDTH + 1 - TrailingZeros::trailing_zeros(mantissa)
545        }
546    }
547
548    /// Given a scientific exponent, returns the largest possible precision for a float with that
549    /// exponent.
550    ///
551    /// See the documentation of the [`precision`](PrimitiveFloat::precision) function for a
552    /// definition of precision.
553    ///
554    /// For exponents greater than or equal to
555    /// [`MIN_NORMAL_EXPONENT`](PrimitiveFloat::MIN_NORMAL_EXPONENT), the maximum precision is one
556    /// more than the mantissa width. For smaller exponents (corresponding to the subnormal range),
557    /// the precision is lower.
558    ///
559    /// # Worst-case complexity
560    /// Constant time and additional memory.
561    ///
562    /// # Panics
563    /// Panics if `exponent` is less than [`MIN_EXPONENT`](PrimitiveFloat::MIN_EXPONENT) or greater
564    /// than [`MAX_EXPONENT`](PrimitiveFloat::MAX_EXPONENT).
565    ///
566    /// # Examples
567    /// ```
568    /// use malachite_base::num::basic::floats::PrimitiveFloat;
569    ///
570    /// assert_eq!(f32::max_precision_for_sci_exponent(0), 24);
571    /// assert_eq!(f32::max_precision_for_sci_exponent(127), 24);
572    /// assert_eq!(f32::max_precision_for_sci_exponent(-149), 1);
573    /// assert_eq!(f32::max_precision_for_sci_exponent(-148), 2);
574    /// assert_eq!(f32::max_precision_for_sci_exponent(-147), 3);
575    /// ```
576    fn max_precision_for_sci_exponent(exponent: i64) -> u64 {
577        assert!(exponent >= Self::MIN_EXPONENT);
578        assert!(exponent <= Self::MAX_EXPONENT);
579        if exponent >= Self::MIN_NORMAL_EXPONENT {
580            Self::MANTISSA_WIDTH + 1
581        } else {
582            u64::wrapping_from(exponent - Self::MIN_EXPONENT) + 1
583        }
584    }
585}
586
587/// Defines basic trait implementations for floating-point types.
588macro_rules! impl_basic_traits_primitive_float {
589    (
590        $t: ident,
591        $width: expr,
592        $min_positive_subnormal: expr,
593        $max_subnormal: expr,
594        $min_positive_normal: expr,
595        $thue_morse_constant: expr,
596        $prime_constant: expr
597    ) => {
598        impl PrimitiveFloat for $t {
599            const WIDTH: u64 = $width;
600            const MANTISSA_WIDTH: u64 = ($t::MANTISSA_DIGITS as u64) - 1;
601
602            const MAX_FINITE: Self = $t::MAX;
603            const MIN_POSITIVE_SUBNORMAL: Self = $min_positive_subnormal;
604            const MAX_SUBNORMAL: Self = $max_subnormal;
605            const MIN_POSITIVE_NORMAL: Self = $min_positive_normal;
606            const SMALLEST_UNREPRESENTABLE_UINT: u64 = (1 << (Self::MANTISSA_WIDTH + 1)) + 1;
607            // We can't shift by $width when $width is 64, so we shift by $width - 1 and then by 1
608            const LARGEST_ORDERED_REPRESENTATION: u64 = (1u64 << ($width - 1) << 1)
609                .wrapping_sub(((1 << Self::MANTISSA_WIDTH) - 1) << 1)
610                - 1;
611
612            #[inline]
613            fn is_nan(self) -> bool {
614                $t::is_nan(self)
615            }
616
617            #[inline]
618            fn is_infinite(self) -> bool {
619                $t::is_infinite(self)
620            }
621
622            #[inline]
623            fn is_finite(self) -> bool {
624                $t::is_finite(self)
625            }
626
627            #[inline]
628            fn is_normal(self) -> bool {
629                $t::is_normal(self)
630            }
631
632            #[inline]
633            fn is_sign_positive(self) -> bool {
634                $t::is_sign_positive(self)
635            }
636
637            #[inline]
638            fn is_sign_negative(self) -> bool {
639                $t::is_sign_negative(self)
640            }
641
642            #[inline]
643            fn classify(self) -> FpCategory {
644                $t::classify(self)
645            }
646
647            #[inline]
648            fn to_bits(self) -> u64 {
649                u64::wrapping_from($t::to_bits(self))
650            }
651
652            #[inline]
653            fn from_bits(v: u64) -> $t {
654                $t::from_bits(v.exact_into())
655            }
656        }
657
658        impl_named!($t);
659
660        /// The constant 0.
661        impl Zero for $t {
662            const ZERO: $t = 0.0;
663        }
664
665        /// The constant 1.
666        impl One for $t {
667            const ONE: $t = 1.0;
668        }
669
670        /// The constant 2.
671        impl Two for $t {
672            const TWO: $t = 2.0;
673        }
674
675        /// The constant 1/2.
676        impl OneHalf for $t {
677            const ONE_HALF: $t = 0.5;
678        }
679
680        /// The constant -1.0 for primitive floating-point types.
681        impl NegativeOne for $t {
682            const NEGATIVE_ONE: $t = -1.0;
683        }
684
685        /// The constant -0.0 for primitive floating-point types.
686        impl NegativeZero for $t {
687            const NEGATIVE_ZERO: $t = -0.0;
688        }
689
690        /// The constant Infinity for primitive floating-point types.
691        impl Infinity for $t {
692            const INFINITY: $t = $t::INFINITY;
693        }
694
695        /// The constant -Infinity for primitive floating-point types.
696        impl NegativeInfinity for $t {
697            const NEGATIVE_INFINITY: $t = $t::NEG_INFINITY;
698        }
699
700        /// The constant NaN for primitive floating-point types.
701        impl NaN for $t {
702            const NAN: $t = $t::NAN;
703        }
704
705        /// The lowest value representable by this type, negative infinity.
706        impl Min for $t {
707            const MIN: $t = $t::NEGATIVE_INFINITY;
708        }
709
710        /// The highest value representable by this type, positive infinity.
711        impl Max for $t {
712            const MAX: $t = $t::INFINITY;
713        }
714
715        /// The Thue-Morse constant.
716        impl ThueMorseConstant for $t {
717            const THUE_MORSE_CONSTANT: $t = $thue_morse_constant;
718        }
719
720        /// The prime constant.
721        impl PrimeConstant for $t {
722            const PRIME_CONSTANT: $t = $prime_constant;
723        }
724    };
725}
726impl_basic_traits_primitive_float!(
727    f32,
728    32,
729    1.0e-45,
730    1.1754942e-38,
731    1.1754944e-38,
732    0.41245404,
733    0.4146825
734);
735impl_basic_traits_primitive_float!(
736    f64,
737    64,
738    5.0e-324,
739    2.225073858507201e-308,
740    2.2250738585072014e-308,
741    0.4124540336401076,
742    0.41468250985111166
743);