1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{ExactFrom, WrappingFrom};
use crate::num::factorization::prime_sieve::{
    id_to_n, limbs_prime_sieve_size, limbs_prime_sieve_u64,
};
use crate::num::factorization::traits::Primes;
use crate::num::logic::traits::TrailingZeros;
use alloc::vec::Vec;
use core::marker::PhantomData;

// This differs from the identically-named function in malachite-nz; this one returns None if there
// are no more false bits.
fn limbs_index_of_next_false_bit<T: PrimitiveUnsigned>(xs: &[T], start: u64) -> Option<u64> {
    let starting_index = usize::exact_from(start >> T::LOG_WIDTH);
    if starting_index >= xs.len() {
        return None;
    }
    if let Some(result) = xs[starting_index].index_of_next_false_bit(start & T::WIDTH_MASK) {
        if result != T::WIDTH {
            return Some((u64::wrapping_from(starting_index) << T::LOG_WIDTH) + result);
        }
    }
    if starting_index == xs.len() - 1 {
        return None;
    }
    let false_index = starting_index
        + 1
        + xs[starting_index + 1..]
            .iter()
            .take_while(|&&y| y == T::MAX)
            .count();
    if false_index == xs.len() {
        None
    } else {
        Some(
            (u64::exact_from(false_index) << T::LOG_WIDTH)
                + TrailingZeros::trailing_zeros(!xs[false_index]),
        )
    }
}

/// An iterator over that generates all primes less than a given value.
///
/// This `struct` is created by [`Primes::primes_less_than`] and
/// [`Primes::primes_less_than_or_equal_to`]; see their documentation for more.
#[derive(Clone, Debug)]
pub struct PrimesLessThanIterator<T: PrimitiveUnsigned> {
    i: u8,
    j: u64,
    sieve: Vec<u64>,
    phantom: PhantomData<*const T>,
}

impl<T: PrimitiveUnsigned> PrimesLessThanIterator<T> {
    fn new(n: T) -> PrimesLessThanIterator<T> {
        let n: u64 = n.saturating_into();
        let mut sieve;
        if n < 5 {
            sieve = Vec::with_capacity(0);
        } else {
            sieve = alloc::vec![0; limbs_prime_sieve_size::<u64>(n)];
            limbs_prime_sieve_u64(&mut sieve, n);
        }
        PrimesLessThanIterator {
            i: 0,
            j: n,
            sieve,
            phantom: PhantomData,
        }
    }
}

impl<T: PrimitiveUnsigned> Iterator for PrimesLessThanIterator<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self.i {
            0 => {
                if self.j < 2 {
                    None
                } else {
                    self.i = 1;
                    Some(T::TWO)
                }
            }
            1 => {
                if self.j == 2 {
                    None
                } else {
                    self.i = 2;
                    self.j = 0;
                    Some(T::from(3u8))
                }
            }
            _ => {
                self.j = limbs_index_of_next_false_bit(&self.sieve, self.j)? + 1;
                Some(T::exact_from(id_to_n(self.j)))
            }
        }
    }
}

/// An iterator over that generates all primes.
///
/// This `struct` is created by [`Primes::primes`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct PrimesIterator<T: PrimitiveUnsigned> {
    limit: T,
    xs: PrimesLessThanIterator<T>,
}

impl<T: PrimitiveUnsigned> PrimesIterator<T> {
    fn new() -> PrimesIterator<T> {
        let limit = T::saturating_from(256u16);
        PrimesIterator {
            limit,
            xs: PrimesLessThanIterator::new(limit),
        }
    }
}

impl<T: PrimitiveUnsigned> Iterator for PrimesIterator<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        loop {
            let p = self.xs.next();
            if p.is_some() {
                return p;
            } else if self.limit == T::MAX {
                return None;
            } else {
                self.limit.saturating_mul_assign(T::TWO);
                let j = self.xs.j;
                self.xs = T::primes_less_than_or_equal_to(&self.limit);
                self.xs.i = 3;
                self.xs.j = j;
            }
        }
    }
}

macro_rules! impl_primes {
    ($t:ident) => {
        impl Primes for $t {
            type I = PrimesIterator<$t>;
            type LI = PrimesLessThanIterator<$t>;

            /// Returns an iterator that generates all primes less than a given value.
            ///
            /// The iterator produced by `primes_less_than(n)` generates the same primes as the
            /// iterator produced by `primes().take_while(|&p| p < n)`, but the latter would be
            /// slower because it doesn't know in advance how large its prime sieve should be, and
            /// might have to create larger and larger prime sieves.
            ///
            /// # Worst-case complexity (amortized)
            /// $T(i) = O(\log \log i)$
            ///
            /// $M(i) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
            ///
            /// # Examples
            /// See [here](super::primes#primes_less_than).
            #[inline]
            fn primes_less_than(n: &$t) -> PrimesLessThanIterator<$t> {
                PrimesLessThanIterator::new(n.saturating_sub(1))
            }

            /// Returns an iterator that generates all primes less than or equal to a given value.
            ///
            /// The iterator produced by `primes_less_than_or_equal_to(n)` generates the same primes
            /// as the iterator produced by `primes().take_while(|&p| p <= n)`, but the latter would
            /// be slower because it doesn't know in advance how large its prime sieve should be,
            /// and might have to create larger and larger prime sieves.
            ///
            /// # Worst-case complexity (amortized)
            /// $T(i) = O(\log \log i)$
            ///
            /// $M(i) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
            ///
            /// # Examples
            /// See [here](super::primes#primes_less_than_or_equal_to).
            #[inline]
            fn primes_less_than_or_equal_to(&n: &$t) -> PrimesLessThanIterator<$t> {
                PrimesLessThanIterator::new(n)
            }

            /// Returns all primes that fit into the specified type.
            ///
            /// The iterator produced by `primes(n)` generates the same primes as the iterator
            /// produced by `primes_less_than_or_equal_to(T::MAX)`. If you really need to generate
            /// _every_ prime, and `T` is `u32` or smaller, then you should use the latter, as it
            /// will allocate all the needed memory at once. If `T` is `u64` or larger, or if you
            /// probably don't need every prime, then `primes()` will be faster as it won't allocate
            /// too much memory right away.
            ///
            /// # Worst-case complexity (amortized)
            /// $T(i) = O(\log \log i)$
            ///
            /// $M(i) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
            ///
            /// # Examples
            /// See [here](super::primes#primes).
            #[inline]
            fn primes() -> PrimesIterator<$t> {
                PrimesIterator::new()
            }
        }
    };
}
apply_to_unsigneds!(impl_primes);