1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
use crate::num::arithmetic::traits::{
    ShlRound, ShlRoundAssign, ShrRound, ShrRoundAssign, UnsignedAbs,
};
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::signeds::PrimitiveSigned;
use crate::rounding_modes::RoundingMode;
use std::cmp::Ordering;
use std::ops::{Shl, ShlAssign};

fn shl_round<
    T: PrimitiveInt + Shl<U, Output = T> + ShrRound<U, Output = T>,
    U,
    S: PrimitiveSigned + UnsignedAbs<Output = U>,
>(
    x: T,
    bits: S,
    rm: RoundingMode,
) -> (T, Ordering) {
    if bits >= S::ZERO {
        let width = S::wrapping_from(T::WIDTH);
        (
            if width >= S::ZERO && bits >= width {
                T::ZERO
            } else {
                x << bits.unsigned_abs()
            },
            Ordering::Equal,
        )
    } else {
        x.shr_round(bits.unsigned_abs(), rm)
    }
}

fn shl_round_assign<
    T: PrimitiveInt + ShlAssign<U> + ShrRoundAssign<U>,
    U,
    S: PrimitiveSigned + UnsignedAbs<Output = U>,
>(
    x: &mut T,
    bits: S,
    rm: RoundingMode,
) -> Ordering {
    if bits >= S::ZERO {
        let width = S::wrapping_from(T::WIDTH);
        if width >= S::ZERO && bits >= width {
            *x = T::ZERO;
        } else {
            *x <<= bits.unsigned_abs();
        }
        Ordering::Equal
    } else {
        x.shr_round_assign(bits.unsigned_abs(), rm)
    }
}

macro_rules! impl_shl_round {
    ($t:ident) => {
        macro_rules! impl_shl_round_inner {
            ($u:ident) => {
                impl ShlRound<$u> for $t {
                    type Output = $t;

                    /// Left-shifts a number (multiplies it by a power of 2 or divides it by a
                    /// power of 2 and takes the floor) and rounds according to the specified
                    /// rounding mode. An [`Ordering`] is also returned, indicating whether the
                    /// returned value is less than, equal to, or greater than the exact value. If
                    /// `bits` is non-negative, then the returned [`Ordering`] is always `Equal`,
                    /// even if the higher bits of the result are lost.
                    ///
                    /// Passing `RoundingMode::Floor` or `RoundingMode::Down` is equivalent to
                    /// using `>>`. To test whether `RoundingMode::Exact` can be passed, use
                    /// `bits > 0 || self.divisible_by_power_of_2(bits)`. Rounding might only be
                    /// necessary if `bits` is negative.
                    ///
                    /// Let $q = x2^k$, and let $g$ be the function that just returns the first
                    /// element of the pair, without the [`Ordering`]:
                    ///
                    /// $g(x, k, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$
                    ///
                    /// $g(x, k, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$
                    ///
                    /// $$
                    /// g(x, k, \mathrm{Nearest}) = \begin{cases}
                    ///     \lfloor q \rfloor & \text{if}
                    ///         \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
                    ///     \lceil q \rceil & \text{if}
                    ///         \\quad q - \lfloor q \rfloor > \frac{1}{2}, \\\\
                    ///     \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor =
                    ///         \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor
                    ///     \\ \text{is even}, \\\\
                    ///     \lceil q \rceil &
                    ///     \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
                    ///         \\ \lfloor q \rfloor \\ \text{is odd}.
                    /// \end{cases}
                    /// $$
                    ///
                    /// $g(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.
                    ///
                    /// Then
                    ///
                    /// $f(x, k, r) = (g(x, k, r), \operatorname{cmp}(g(x, k, r), q))$.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Panics
                    /// Panics if `bits` is positive and `rm` is `RoundingMode::Exact` but `self` is
                    /// not divisible by $2^b$.
                    ///
                    /// # Examples
                    /// See [here](super::shl_round#shl_round).
                    #[inline]
                    fn shl_round(self, bits: $u, rm: RoundingMode) -> ($t, Ordering) {
                        shl_round(self, bits, rm)
                    }
                }

                impl ShlRoundAssign<$u> for $t {
                    /// Left-shifts a number (multiplies it by a power of 2 or divides it by a
                    /// power of 2 and takes the floor) and rounds according to the specified
                    /// rounding mode, in place. An [`Ordering`] is returned, indicating whether
                    /// the assigned value is less than, equal to, or greater than the exact value.
                    /// If `bits` is non-negative, then the returned [`Ordering`] is always
                    /// `Equal`, even if the higher bits of the result are lost.
                    ///
                    /// Passing `RoundingMode::Floor` or `RoundingMode::Down` is equivalent to
                    /// using `>>`. To test whether `RoundingMode::Exact` can be passed, use
                    /// `bits > 0 || self.divisible_by_power_of_2(bits)`. Rounding might only be
                    /// necessary if `bits` is negative.
                    ///
                    /// See the [`ShlRound`] documentation for details.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Panics
                    /// Panics if `bits` is positive and `rm` is `RoundingMode::Exact` but `self` is
                    /// not divisible by $2^b$.
                    ///
                    /// # Examples
                    /// See [here](super::shl_round#shl_round_assign).
                    #[inline]
                    fn shl_round_assign(&mut self, bits: $u, rm: RoundingMode) -> Ordering {
                        shl_round_assign(self, bits, rm)
                    }
                }
            };
        }
        apply_to_signeds!(impl_shl_round_inner);
    };
}
apply_to_primitive_ints!(impl_shl_round);