1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
use crate::num::arithmetic::traits::{
BinomialCoefficient, CheckedBinomialCoefficient, UnsignedAbs,
};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::OverflowingFrom;
use crate::num::exhaustive::primitive_int_increasing_inclusive_range;
use std::cmp::min;
fn checked_binomial_coefficient_unsigned<T: PrimitiveUnsigned>(n: T, mut k: T) -> Option<T> {
if k > n {
return Some(T::ZERO);
}
k = min(k, n - k);
if k == T::ZERO {
Some(T::ONE)
} else if k == T::ONE {
Some(n)
} else if k == T::TWO {
(if n.even() { n - T::ONE } else { n }).checked_mul(n >> 1)
} else {
// Some binomial coefficient algorithms have intermediate results greater than the final
// result, risking overflow. This one does not.
let mut product = n - k + T::ONE;
let mut numerator = product;
for i in primitive_int_increasing_inclusive_range(T::TWO, k) {
numerator += T::ONE;
let gcd = numerator.gcd(i);
product /= i / gcd;
product = product.checked_mul(numerator / gcd)?;
}
Some(product)
}
}
fn checked_binomial_coefficient_signed<
U: PrimitiveUnsigned,
S: OverflowingFrom<U> + PrimitiveSigned + TryFrom<U> + UnsignedAbs<Output = U>,
>(
n: S,
k: S,
) -> Option<S> {
if k < S::ZERO {
return None;
}
if n >= S::ZERO {
S::try_from(U::checked_binomial_coefficient(
n.unsigned_abs(),
k.unsigned_abs(),
)?)
.ok()
} else {
let k = k.unsigned_abs();
let b = U::checked_binomial_coefficient(n.unsigned_abs() + k - U::ONE, k)?;
if k.even() {
S::try_from(b).ok()
} else {
let (b, overflow) = S::overflowing_from(b);
if overflow {
if b == S::MIN {
Some(S::MIN)
} else {
None
}
} else {
Some(-b)
}
}
}
}
macro_rules! impl_binomial_coefficient_unsigned {
($t:ident) => {
impl CheckedBinomialCoefficient for $t {
/// Computes the binomial coefficient of two numbers. If the inputs are too large, the
/// function returns `None`.
///
/// $$
/// f(n, k) = \\begin{cases}
/// \operatorname{Some}(\binom{n}{k}) & \text{if} \\quad \binom{n}{k} < 2^W, \\\\
/// \operatorname{None} & \text{if} \\quad \binom{n}{k} \geq 2^W,
/// \\end{cases}
/// $$
/// where $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// $T(k) = O(k)$
///
/// $M(k) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $k$ is `k`.
///
/// # Examples
/// See [here](super::binomial_coefficient#checked_binomial_coefficient).
#[inline]
fn checked_binomial_coefficient(n: $t, k: $t) -> Option<$t> {
checked_binomial_coefficient_unsigned(n, k)
}
}
};
}
apply_to_unsigneds!(impl_binomial_coefficient_unsigned);
macro_rules! impl_binomial_coefficient_signed {
($t:ident) => {
impl CheckedBinomialCoefficient for $t {
/// Computes the binomial coefficient of two numbers. If the inputs are too large, the
/// function returns `None`.
///
/// The second argument must be non-negative, but the first may be negative. If it is,
/// the identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
///
/// $$
/// f(n, k) = \\begin{cases}
/// \operatorname{Some}(\binom{n}{k}) & \text{if} \\quad n \geq 0 \\ \text{and}
/// \\ -2^{W-1} \leq \binom{n}{k} < 2^{W-1}, \\\\
/// \operatorname{Some}((-1)^k \binom{-n+k-1}{k}) & \text{if} \\quad n < 0
/// \\ \text{and} \\ -2^{W-1} \leq \binom{n}{k} < 2^{W-1}, \\\\
/// \operatorname{None} & \\quad \\text{otherwise},
/// \\end{cases}
/// $$
/// where $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// $T(k) = O(k)$
///
/// $M(k) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $k$ is `k.abs()`.
///
/// # Examples
/// See [here](super::binomial_coefficient#checked_binomial_coefficient).
#[inline]
fn checked_binomial_coefficient(n: $t, k: $t) -> Option<$t> {
checked_binomial_coefficient_signed(n, k)
}
}
};
}
apply_to_signeds!(impl_binomial_coefficient_signed);
macro_rules! impl_binomial_coefficient_primitive_int {
($t:ident) => {
impl BinomialCoefficient for $t {
/// Computes the binomial coefficient of two numbers. If the inputs are too large, the
/// function panics.
///
/// The second argument must be non-negative, but the first may be negative. If it is,
/// the identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
///
/// $$
/// f(n, k) = \\begin{cases}
/// \binom{n}{k} & \text{if} \\quad n \geq 0, \\\\
/// (-1)^k \binom{-n+k-1}{k} & \text{if} \\quad n < 0.
/// \\end{cases}
/// $$
///
/// # Worst-case complexity
/// $T(k) = O(k)$
///
/// $M(k) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $k$ is `k.abs()`.
///
/// # Panics
/// Panics if the result is not representable by this type, or if $k$ is negative.
///
/// # Examples
/// See [here](super::binomial_coefficient#binomial_coefficient).
#[inline]
fn binomial_coefficient(n: $t, k: $t) -> $t {
$t::checked_binomial_coefficient(n, k).unwrap()
}
}
};
}
apply_to_primitive_ints!(impl_binomial_coefficient_primitive_int);