1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
use crate::num::arithmetic::traits::{
ShlRound, ShlRoundAssign, ShrRound, ShrRoundAssign, UnsignedAbs,
};
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::signeds::PrimitiveSigned;
use crate::rounding_modes::RoundingMode;
use std::cmp::Ordering;
use std::ops::{Shl, ShlAssign};
fn shl_round<
T: PrimitiveInt + Shl<U, Output = T> + ShrRound<U, Output = T>,
U,
S: PrimitiveSigned + UnsignedAbs<Output = U>,
>(
x: T,
bits: S,
rm: RoundingMode,
) -> (T, Ordering) {
if bits >= S::ZERO {
let width = S::wrapping_from(T::WIDTH);
(
if width >= S::ZERO && bits >= width {
T::ZERO
} else {
x << bits.unsigned_abs()
},
Ordering::Equal,
)
} else {
x.shr_round(bits.unsigned_abs(), rm)
}
}
fn shl_round_assign<
T: PrimitiveInt + ShlAssign<U> + ShrRoundAssign<U>,
U,
S: PrimitiveSigned + UnsignedAbs<Output = U>,
>(
x: &mut T,
bits: S,
rm: RoundingMode,
) -> Ordering {
if bits >= S::ZERO {
let width = S::wrapping_from(T::WIDTH);
if width >= S::ZERO && bits >= width {
*x = T::ZERO;
} else {
*x <<= bits.unsigned_abs();
}
Ordering::Equal
} else {
x.shr_round_assign(bits.unsigned_abs(), rm)
}
}
macro_rules! impl_shl_round {
($t:ident) => {
macro_rules! impl_shl_round_inner {
($u:ident) => {
impl ShlRound<$u> for $t {
type Output = $t;
/// Left-shifts a number (multiplies it by a power of 2 or divides it by a
/// power of 2 and takes the floor) and rounds according to the specified
/// rounding mode. An [`Ordering`] is also returned, indicating whether the
/// returned value is less than, equal to, or greater than the exact value. If
/// `bits` is non-negative, then the returned [`Ordering`] is always `Equal`,
/// even if the higher bits of the result are lost.
///
/// Passing `RoundingMode::Floor` or `RoundingMode::Down` is equivalent to
/// using `>>`. To test whether `RoundingMode::Exact` can be passed, use
/// `bits > 0 || self.divisible_by_power_of_2(bits)`. Rounding might only be
/// necessary if `bits` is negative.
///
/// Let $q = x2^k$, and let $g$ be the function that just returns the first
/// element of the pair, without the [`Ordering`]:
///
/// $g(x, k, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor.$
///
/// $g(x, k, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil.$
///
/// $$
/// g(x, k, \mathrm{Nearest}) = \begin{cases}
/// \lfloor q \rfloor & \text{if}
/// \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
/// \lceil q \rceil & \text{if}
/// \\quad q - \lfloor q \rfloor > \frac{1}{2}, \\\\
/// \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor =
/// \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor
/// \\ \text{is even}, \\\\
/// \lceil q \rceil &
/// \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
/// \\ \lfloor q \rfloor \\ \text{is odd}.
/// \end{cases}
/// $$
///
/// $g(x, k, \mathrm{Exact}) = q$, but panics if $q \notin \N$.
///
/// Then
///
/// $f(x, k, r) = (g(x, k, r), \operatorname{cmp}(g(x, k, r), q))$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `bits` is positive and `rm` is `RoundingMode::Exact` but `self` is
/// not divisible by $2^b$.
///
/// # Examples
/// See [here](super::shl_round#shl_round).
#[inline]
fn shl_round(self, bits: $u, rm: RoundingMode) -> ($t, Ordering) {
shl_round(self, bits, rm)
}
}
impl ShlRoundAssign<$u> for $t {
/// Left-shifts a number (multiplies it by a power of 2 or divides it by a
/// power of 2 and takes the floor) and rounds according to the specified
/// rounding mode, in place. An [`Ordering`] is returned, indicating whether
/// the assigned value is less than, equal to, or greater than the exact value.
/// If `bits` is non-negative, then the returned [`Ordering`] is always
/// `Equal`, even if the higher bits of the result are lost.
///
/// Passing `RoundingMode::Floor` or `RoundingMode::Down` is equivalent to
/// using `>>`. To test whether `RoundingMode::Exact` can be passed, use
/// `bits > 0 || self.divisible_by_power_of_2(bits)`. Rounding might only be
/// necessary if `bits` is negative.
///
/// See the [`ShlRound`] documentation for details.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `bits` is positive and `rm` is `RoundingMode::Exact` but `self` is
/// not divisible by $2^b$.
///
/// # Examples
/// See [here](super::shl_round#shl_round_assign).
#[inline]
fn shl_round_assign(&mut self, bits: $u, rm: RoundingMode) -> Ordering {
shl_round_assign(self, bits, rm)
}
}
};
}
apply_to_signeds!(impl_shl_round_inner);
};
}
apply_to_primitive_ints!(impl_shl_round);