pub trait EqModPowerOf2<RHS = Self> {
    fn eq_mod_power_of_2(self, other: RHS, pow: u64) -> bool;
}
Expand description

Determines whether a number is equivalent to another number modulo $2^k$.

Required Methods

Implementations on Foreign Types

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Returns whether one number is equal to another modulo $2^k$.

$f(x, y, k) = (x \equiv y \mod 2^k)$.

$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.

Worst-case complexity

Constant time and additional memory.

Examples

See here.

Implementors