machine_factor/mfactor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
use crate::primes::PRIMES_128;
/// Deterministic Random Bit Generator (xorshift)
pub const fn drbg(mut x: u64) -> u64{
x ^= x.wrapping_shr(12);
x ^= x.wrapping_shl(25);
x ^= x.wrapping_shr(27);
x.wrapping_mul(0x2545F4914F6CDD1D)
}
/// GCD(A,B)
#[no_mangle]
pub const extern "C" fn gcd(mut a: u64, mut b: u64) -> u64{
if b == 0 {
return a;
} else if a == 0 {
return b;
}
let self_two_factor = a.trailing_zeros();
let other_two_factor = b.trailing_zeros();
let mut min_two_factor = self_two_factor;
if other_two_factor < self_two_factor{
min_two_factor=other_two_factor;
}
a >>= self_two_factor;
b >>= other_two_factor;
loop {
if b > a {
let interim = b;
b = a;
a = interim;
}
a -= b;
if a == 0 {
return b << min_two_factor;
}
a >>= a.trailing_zeros();
}
}
const fn poly_eval(x: u64, subtrahend: u64, n: u64, npi: u64) -> u64{
machine_prime::mont_sub(machine_prime::mont_prod(x,x,n,npi),subtrahend,n)
}
const fn pollard_brent(base: u64,inv:u64,subtrahend: u64, n: u64) -> Option<u64>{
let m = 128;
let mut r = 1;
let mut q = 1;
let mut g = 1;
let mut ys = 1;
let mut y = base;
let mut x = y;
let mut cycle = 0;
while cycle < 17{
cycle+=1;
x = y;
let mut yloop = 0;
while yloop < r{
yloop+=1;
y = poly_eval(y,subtrahend,n,inv);
}
let mut k = 0;
loop{
let mut i = 0;
while i < m*cycle{
if i >= r-k{
break;
}
y=poly_eval(y,subtrahend,n,inv);
q=machine_prime::mont_prod(q,x.abs_diff(y),n,inv);
i+=1;
} // end loop
ys=y;
g = gcd(q,n);
k+=m;
if k >= r || g !=1{
break;
}
}
r<<=1;
if g != 1{
break;
}
}
if g ==n{
while g==1{
ys=poly_eval(ys,subtrahend,n,inv);
g=gcd(x.abs_diff(ys),n);
}
}
if g !=1 && g !=n && machine_prime::is_prime_wc(g){
return Some(g);
}
None
}
/// Returns some prime factor of an 64-bit integer
///
/// This function uses the Pollard-rho algorithm and mostly exists for FFI
#[no_mangle]
pub const extern "C" fn get_factor(n: u64) -> u64{
let inv = machine_prime::mul_inv2(n);
let one = machine_prime::one_mont(n);
let base = machine_prime::two_mont(one,n);
match pollard_brent(base,inv,one,n){
Some(factor) => return factor,
None => {
// if x^2 -1 failed try x^2+1
// No particular reason except to reuse some values
let coef = machine_prime::to_mont(n-1,n);
match pollard_brent(base,inv,coef,n){
Some(factor) => return factor,
None => {
// Loop that has a roughly 0.5 probability of factoring each iteration
let mut param = drbg(n);
loop{
let rand_base= param%(n-3)+3;
match pollard_brent(rand_base,inv,one,n){
Some(factor) => return factor,
None => param=drbg(param),
}
}
}
}
}
}
}
/// Factorisation of an integer
///
/// Representation of the factors in the form p^k p2^k
#[repr(C)]
pub struct FactorArray{
pub factors: [u64;30],
pub len: usize,
}
impl FactorArray{
const fn new() -> Self{
FactorArray{factors: [0u64;30], len: 0}
}
}
// FIXME Return 1 if 1 and 0 if 0
// Fix the indexing/ length calculation
/// Complete factorization of N
#[no_mangle]
pub const extern "C" fn factorize(mut n: u64) -> FactorArray{
let mut t = FactorArray::new();
let mut idx = 0usize;
if n == 0{
return t;
}
if n == 1{
t.factors[0]=1;
t.factors[1]=1;
t.len = 1;
return t;
}
let twofactor = n.trailing_zeros();
if twofactor != 0{
t.factors[0]=2u64;
t.factors[1]=twofactor as u64;
idx+=2;
}
let mut i = 0usize;
while i < 128 {
let fctr = PRIMES_128[i] as u64;
// strips out small primes
if n % fctr == 0 {
// idx+=1;
t.factors[idx]=fctr;
idx+=1;
let mut count = 0u64;
while n % fctr == 0 {
count += 1;
n /= fctr;
}
t.factors[idx]=count;
idx+=1;
}
i+=1;
}
if n == 1 {
return t;
}
if machine_prime::is_prime_wc(n){
t.factors[idx]=n;
t.factors[idx+1]=1;
idx+=2;
t.len=idx/2;
return t;
}
while n != 1 {
let k = get_factor(n);
t.factors[idx]=k;
idx+=1;
let mut count = 0u64;
while n % k == 0 {
count += 1;
n /= k;
}
t.factors[idx]=count;
idx+=1;
if n == 1{
t.len=idx/2;
return t;
}
if machine_prime::is_prime_wc(n){
t.factors[idx]=n;
idx+=1;
t.factors[idx]=1;
idx+=1;
t.len=idx/2;
return t;
}
}
t
}