1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
use {Line, LineSegment, LineEquation};
use scalar::Scalar;
use generic_math::{Point, Vector, Rect, rect, Transform2D};
use arrayvec::ArrayVec;
use flatten_cubic::{flatten_cubic_bezier, find_cubic_bezier_inflection_points};
pub use flatten_cubic::Flattened;
use cubic_to_quadratic::*;
use monotonic::Monotonic;
use utils::{min_max, cubic_polynomial_roots};
use segment::{Segment, FlattenedForEach, approximate_length_from_flattening, BoundingRect};
use QuadraticBezierSegment;

use std::ops::Range;

/// A 2d curve segment defined by four points: the beginning of the segment, two control
/// points and the end of the segment.
///
/// The curve is defined by equation:²
/// ```∀ t ∈ [0..1],  P(t) = (1 - t)³ * from + 3 * (1 - t)² * t * ctrl1 + 3 * t² * (1 - t) * ctrl2 + t³ * to```
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Serialize, Deserialize))]
pub struct CubicBezierSegment<S> {
    pub from: Point<S>,
    pub ctrl1: Point<S>,
    pub ctrl2: Point<S>,
    pub to: Point<S>,
}

impl<S: Scalar> CubicBezierSegment<S> {
    /// Sample the curve at t (expecting t between 0 and 1).
    pub fn sample(&self, t: S) -> Point<S> {
        let t2 = t * t;
        let t3 = t2 * t;
        let one_t = S::ONE - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;
        return self.from * one_t3 +
            self.ctrl1.to_vector() * S::THREE * one_t2 * t +
            self.ctrl2.to_vector() * S::THREE * one_t * t2 +
            self.to.to_vector() * t3;
    }

    /// Sample the x coordinate of the curve at t (expecting t between 0 and 1).
    pub fn x(&self, t: S) -> S {
        let t2 = t * t;
        let t3 = t2 * t;
        let one_t = S::ONE - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;
        return self.from.x * one_t3 +
            self.ctrl1.x * S::THREE * one_t2 * t +
            self.ctrl2.x * S::THREE * one_t * t2 +
            self.to.x * t3;
    }

    /// Sample the y coordinate of the curve at t (expecting t between 0 and 1).
    pub fn y(&self, t: S) -> S {
        let t2 = t * t;
        let t3 = t2 * t;
        let one_t = S::ONE - t;
        let one_t2 = one_t * one_t;
        let one_t3 = one_t2 * one_t;
        return self.from.y * one_t3 +
            self.ctrl1.y * S::THREE * one_t2 * t +
            self.ctrl2.y * S::THREE * one_t * t2 +
            self.to.y * t3;
    }

    #[inline]
    fn derivative_coefficients(&self, t: S) -> (S, S, S, S) {
        let t2 = t*t;
        (
            - S::THREE * t2 + S::SIX * t - S::THREE,
            S::NINE * t2 - S::value(12.0) * t + S::THREE,
            - S::NINE * t2 + S::SIX * t,
            S::THREE * t2
        )
    }

    /// Sample the curve's derivative at t (expecting t between 0 and 1).
    pub fn derivative(&self, t: S) -> Vector<S> {
        let (c0, c1, c2, c3) = self.derivative_coefficients(t);
        self.from.to_vector() * c0 +
            self.ctrl1.to_vector() * c1 +
            self.ctrl2.to_vector() * c2 +
            self.to.to_vector() * c3
    }

    /// Sample the x coordinate of the curve's derivative at t (expecting t between 0 and 1).
    pub fn dx(&self, t: S) -> S {
        let (c0, c1, c2, c3) = self.derivative_coefficients(t);
        self.from.x * c0 + self.ctrl1.x * c1 + self.ctrl2.x * c2 + self.to.x * c3
    }

    /// Sample the y coordinate of the curve's derivative at t (expecting t between 0 and 1).
    pub fn dy(&self, t: S) -> S {
        let (c0, c1, c2, c3) = self.derivative_coefficients(t);
        self.from.y * c0 + self.ctrl1.y * c1 + self.ctrl2.y * c2 + self.to.y * c3
    }

    /// Return the sub-curve inside a given range of t.
    ///
    /// This is equivalent splitting at the range's end points.
    pub fn split_range(&self, t_range: Range<S>) -> Self {
        let t1 = t_range.start;
        let t2 = (t_range.end - t_range.start) / (S::ONE - t_range.start);

        self.after_split(t1).before_split(t2)
    }

    /// Split this curve into two sub-curves.
    pub fn split(&self, t: S) -> (CubicBezierSegment<S>, CubicBezierSegment<S>) {
        let ctrl1a = self.from + (self.ctrl1 - self.from) * t;
        let ctrl2a = self.ctrl1 + (self.ctrl2 - self.ctrl1) * t;
        let ctrl1aa = ctrl1a + (ctrl2a - ctrl1a) * t;
        let ctrl3a = self.ctrl2 + (self.to - self.ctrl2) * t;
        let ctrl2aa = ctrl2a + (ctrl3a - ctrl2a) * t;
        let ctrl1aaa = ctrl1aa + (ctrl2aa - ctrl1aa) * t;
        let to = self.to;

        return (CubicBezierSegment {
            from: self.from,
            ctrl1: ctrl1a,
            ctrl2: ctrl1aa,
            to: ctrl1aaa,
        },
        CubicBezierSegment {
            from: ctrl1aaa,
            ctrl1: ctrl2aa,
            ctrl2: ctrl3a,
            to: to,
        });
    }

    /// Return the curve before the split point.
    pub fn before_split(&self, t: S) -> CubicBezierSegment<S> {
        let ctrl1a = self.from + (self.ctrl1 - self.from) * t;
        let ctrl2a = self.ctrl1 + (self.ctrl2 - self.ctrl1) * t;
        let ctrl1aa = ctrl1a + (ctrl2a - ctrl1a) * t;
        let ctrl3a = self.ctrl2 + (self.to - self.ctrl2) * t;
        let ctrl2aa = ctrl2a + (ctrl3a - ctrl2a) * t;
        let ctrl1aaa = ctrl1aa + (ctrl2aa - ctrl1aa) * t;
        return CubicBezierSegment {
            from: self.from,
            ctrl1: ctrl1a,
            ctrl2: ctrl1aa,
            to: ctrl1aaa,
        };
    }

    /// Return the curve after the split point.
    pub fn after_split(&self, t: S) -> CubicBezierSegment<S> {
        let ctrl1a = self.from + (self.ctrl1 - self.from) * t;
        let ctrl2a = self.ctrl1 + (self.ctrl2 - self.ctrl1) * t;
        let ctrl1aa = ctrl1a + (ctrl2a - ctrl1a) * t;
        let ctrl3a = self.ctrl2 + (self.to - self.ctrl2) * t;
        let ctrl2aa = ctrl2a + (ctrl3a - ctrl2a) * t;
        return CubicBezierSegment {
            from: ctrl1aa + (ctrl2aa - ctrl1aa) * t,
            ctrl1: ctrl2a + (ctrl3a - ctrl2a) * t,
            ctrl2: ctrl3a,
            to: self.to,
        };
    }

    #[inline]
    pub fn baseline(&self) -> LineSegment<S> {
        LineSegment { from: self.from, to: self.to }
    }

    pub fn is_linear(&self, tolerance: S) -> bool {
        let epsilon = S::EPSILON;
        if (self.from - self.to).square_length() < epsilon {
            return false;
        }
        let line = self.baseline().to_line().equation();
        line.distance_to_point(&self.ctrl1) < tolerance
            && line.distance_to_point(&self.ctrl2) < tolerance
    }

    /// Computes a "fat line" of this segment.
    ///
    /// A fat line is two convervative lines between which the segment
    /// is fully contained.
    pub fn fat_line(&self) -> (LineEquation<S>, LineEquation<S>) {
        let baseline = self.baseline().to_line().equation();
        let (mut d1, mut d2) = min_max(
            baseline.signed_distance_to_point(&self.ctrl1),
            baseline.signed_distance_to_point(&self.ctrl2),
        );

        d1 = S::min(d1, S::ZERO);
        d2 = S::max(d2, S::ZERO);

        let frac_3_4 = S::THREE / S::FOUR;

        if (d1 * d2).is_sign_positive() {
            d1 = d1 * frac_3_4;
            d2 = d2 * frac_3_4;
        } else {
            d1 = d1 * frac_3_4 * frac_3_4;
            d2 = d2 * frac_3_4 * frac_3_4;
        }

        (baseline.offset(d1), baseline.offset(d2))
    }

    /// Applies the transform to this curve and returns the results.
    #[inline]
    pub fn transform(&self, transform: &Transform2D<S>) -> Self {
        CubicBezierSegment {
            from: transform.transform_point(&self.from),
            ctrl1: transform.transform_point(&self.ctrl1),
            ctrl2: transform.transform_point(&self.ctrl2),
            to: transform.transform_point(&self.to)
        }
    }

    /// Swap the beginning and the end of the segment.
    pub fn flip(&self) -> Self {
        CubicBezierSegment {
            from: self.to,
            ctrl1: self.ctrl2,
            ctrl2: self.ctrl1,
            to: self.from,
        }
    }

    /// Returns the flattened representation of the curve as an iterator, starting *after* the
    /// current point.
    pub fn flattened(&self, tolerance: S) -> Flattened<S> {
        Flattened::new(*self, tolerance)
    }

    /// Invokes a callback between each monotonic part of the segment.
    pub fn for_each_monotonic_t<F>(&self, mut cb: F)
    where
        F: FnMut(S),
    {
        let mut x_extrema: ArrayVec<[S; 3]> = ArrayVec::new();
        self.for_each_local_x_extremum_t(&mut|t| { x_extrema.push(t) });

        let mut y_extrema: ArrayVec<[S; 3]> = ArrayVec::new();
        self.for_each_local_y_extremum_t(&mut|t| { y_extrema.push(t) });

        let mut it_x = x_extrema.iter().cloned();
        let mut it_y = y_extrema.iter().cloned();
        let mut tx = it_x.next();
        let mut ty = it_y.next();
        loop {
            let next = match (tx, ty) {
                (Some(a), Some(b)) => {
                    if a < b {
                        tx = it_x.next();
                        a
                    } else {
                        ty = it_y.next();
                        b
                    }
                }
                (Some(a), None) => {
                    tx = it_x.next();
                    a
                }
                (None, Some(b)) => {
                    ty = it_y.next();
                    b
                }
                (None, None) => {
                    return
                }
            };
            if next > S::ZERO && next < S::ONE {
                cb(next);
            }
        }
    }

    /// Invokes a callback for each monotonic part of the segment..
    pub fn for_each_monotonic_range<F>(&self, mut cb: F)
    where
        F: FnMut(Range<S>),
    {
        let mut t0 = S::ZERO;
        self.for_each_monotonic_t(|t| {
            cb(t0..t);
            t0 = t;
        });
        cb(t0..S::ONE);
    }

    /// Approximates the cubic bézier curve with sequence of quadratic ones,
    /// invoking a callback at each step.
    pub fn for_each_quadratic_bezier<F>(&self, tolerance: S, cb: &mut F)
    where
        F: FnMut(&QuadraticBezierSegment<S>)
    {
        cubic_to_quadratics(self, tolerance, cb);
    }

    /// Approximates the cubic bézier curve with sequence of monotonic quadratic
    /// ones, invoking a callback at each step.
    pub fn for_each_monotonic_quadratic<F>(&self, tolerance: S, cb: &mut F)
    where
        F: FnMut(&Monotonic<QuadraticBezierSegment<S>>)
    {
        cubic_to_monotonic_quadratics(self, tolerance, cb);
    }

    /// Iterates through the curve invoking a callback at each point.
    pub fn for_each_flattened<F: FnMut(Point<S>)>(&self, tolerance: S, call_back: &mut F) {
        flatten_cubic_bezier(*self, tolerance, call_back);
    }

    /// Compute the length of the segment using a flattened approximation.
    pub fn approximate_length(&self, tolerance: S) -> S {
        approximate_length_from_flattening(self, tolerance)
    }

    pub fn for_each_inflection_t<F>(&self, cb: &mut F)
    where F: FnMut(S) {
        find_cubic_bezier_inflection_points(self, cb);
    }

    /// Return local x extrema or None if this curve is monotonic.
    ///
    /// This returns the advancements along the curve, not the actual x position.
    pub fn for_each_local_x_extremum_t<F>(&self, cb: &mut F)
    where F: FnMut(S) {
        Self::for_each_local_extremum(self.from.x, self.ctrl1.x, self.ctrl2.x, self.to.x, cb)
    }

    /// Return local y extrema or None if this curve is monotonic.
    ///
    /// This returns the advancements along the curve, not the actual y position.
    pub fn for_each_local_y_extremum_t<F>(&self, cb: &mut F)
    where F: FnMut(S) {
        Self::for_each_local_extremum(self.from.y, self.ctrl1.y, self.ctrl2.y, self.to.y, cb)
    }


    fn for_each_local_extremum<F>(p0: S, p1: S, p2: S, p3: S, cb: &mut F)
    where F: FnMut(S) {
        // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
        // The derivative of a cubic bezier curve is a curve representing a second degree polynomial function
        // f(x) = a * x² + b * x + c such as :

        let a = S::THREE * (p3 + S::THREE * (p1 - p2) - p0);
        let b = S::SIX * (p2 - S::TWO * p1 + p0);
        let c = S::THREE * (p1 - p0);

        fn in_range<S: Scalar>(t: S) -> bool { t > S::ZERO && t < S::ONE }

        // If the derivative is a linear function
        if a == S::ZERO {
            if b != S::ZERO {
                let t = -c / b;
                if in_range(t) {
                    cb(t);
                }
            }
            return;
        }

        let discriminant = b * b - S::FOUR * a * c;

        // There is no Real solution for the equation
        if discriminant < S::ZERO {
            return;
        }

        // There is one Real solution for the equation
        if discriminant == S::ZERO {
            let t = -b / (S::TWO * a);
            if in_range(t) {
                cb(t);
            }
            return;
        }

        // There are two Real solutions for the equation
        let discriminant_sqrt = discriminant.sqrt();

        let first_extremum = (-b - discriminant_sqrt) / (S::TWO * a);
        let second_extremum = (-b + discriminant_sqrt) / (S::TWO * a);

        if in_range(first_extremum) {
            cb(first_extremum);
        }

        if in_range(second_extremum) {
            cb(second_extremum);
        }
    }

    /// Find the advancement of the y-most position in the curve.
    ///
    /// This returns the advancement along the curve, not the actual y position.
    pub fn y_maximum_t(&self) -> S {
        let mut max_t = S::ZERO;
        let mut max_y = self.from.y;
        if self.to.y > max_y {
            max_t = S::ONE;
            max_y = self.to.y;
        }
        self.for_each_local_y_extremum_t(&mut|t| {
            let y = self.y(t);
            if y > max_y {
                max_t = t;
                max_y = y;
            }
        });
        return max_t;
    }

    /// Find the advancement of the y-least position in the curve.
    ///
    /// This returns the advancement along the curve, not the actual y position.
    pub fn y_minimum_t(&self) -> S {
        let mut min_t = S::ZERO;
        let mut min_y = self.from.y;
        if self.to.y < min_y {
            min_t = S::ONE;
            min_y = self.to.y;
        }
        self.for_each_local_y_extremum_t(&mut |t| {
            let y = self.y(t);
            if y < min_y {
                min_t = t;
                min_y = y;
            }
        });
        return min_t;
    }

    /// Find the advancement of the x-most position in the curve.
    ///
    /// This returns the advancement along the curve, not the actual x position.
    pub fn x_maximum_t(&self) -> S {
        let mut max_t = S::ZERO;
        let mut max_x = self.from.x;
        if self.to.x > max_x {
            max_t = S::ONE;
            max_x = self.to.x;
        }
        self.for_each_local_x_extremum_t(&mut |t| {
            let x = self.x(t);
            if x > max_x {
                max_t = t;
                max_x = x;
            }
        });
        return max_t;
    }

    /// Find the x-least position in the curve.
    pub fn x_minimum_t(&self) -> S {
        let mut min_t = S::ZERO;
        let mut min_x = self.from.x;
        if self.to.x < min_x {
            min_t = S::ONE;
            min_x = self.to.x;
        }
        self.for_each_local_x_extremum_t(&mut |t| {
            let x = self.x(t);
            if x < min_x {
                min_t = t;
                min_x = x;
            }
        });
        return min_t;
    }

    /// Returns a conservative rectangle the curve is contained in.
    ///
    /// This method is faster than `bounding_rect` but more conservative.
    pub fn fast_bounding_rect(&self) -> Rect<S> {
        let (min_x, max_x) = self.fast_bounding_range_x();
        let (min_y, max_y) = self.fast_bounding_range_y();

        return rect(min_x, min_y, max_x - min_x, max_y - min_y);
    }

    /// Returns a conservative range of x this curve is contained in.
    #[inline]
    pub fn fast_bounding_range_x(&self) -> (S, S) {
        let min_x = self.from.x.min(self.ctrl1.x).min(self.ctrl2.x).min(self.to.x);
        let max_x = self.from.x.max(self.ctrl1.x).max(self.ctrl2.x).max(self.to.x);

        (min_x, max_x)
    }

    /// Returns a conservative range of y this curve is contained in.
    #[inline]
    pub fn fast_bounding_range_y(&self) -> (S, S) {
        let min_y = self.from.y.min(self.ctrl1.y).min(self.ctrl2.y).min(self.to.y);
        let max_y = self.from.y.max(self.ctrl1.y).max(self.ctrl2.y).max(self.to.y);

        (min_y, max_y)
    }

    /// Returns the smallest rectangle the curve is contained in
    pub fn bounding_rect(&self) -> Rect<S> {
        let (min_x, max_x) = self.bounding_range_x();
        let (min_y, max_y) = self.bounding_range_y();

        return rect(min_x, min_y, max_x - min_x, max_y - min_y);
    }

    /// Returns the smallest range of x this curve is contained in.
    #[inline]
    pub fn bounding_range_x(&self) -> (S, S) {
        let min_x = self.x(self.x_minimum_t());
        let max_x = self.x(self.x_maximum_t());

        (min_x, max_x)
    }

    /// Returns the smallest range of y this curve is contained in.
    #[inline]
    pub fn bounding_range_y(&self) -> (S, S) {
        let min_y = self.y(self.y_minimum_t());
        let max_y = self.y(self.y_maximum_t());

        (min_y, max_y)
    }

    /// Cast this curve into a monotonic curve without checking that the monotonicity
    /// assumption is correct.
    pub fn assume_monotonic(&self) -> MonotonicCubicBezierSegment<S> {
        MonotonicCubicBezierSegment { segment: *self }
    }

    /// Returns whether this segment is monotonic on the x axis.
    pub fn is_x_monotonic(&self) -> bool {
        let mut found = false;
        self.for_each_local_x_extremum_t(&mut |_|{ found = true; });
        !found
    }

    /// Returns whether this segment is monotonic on the y axis.
    pub fn is_y_monotonic(&self) -> bool {
        let mut found = false;
        self.for_each_local_y_extremum_t(&mut |_|{ found = true; });
        !found
    }

    /// Returns whether this segment is fully monotonic.
    pub fn is_monotonic(&self) -> bool {
        self.is_x_monotonic() && self.is_y_monotonic()
    }

    /// Computes the intersections (if any) between this segment a line.
    ///
    /// The result is provided in the form of the `t` parameters of each
    /// point along curve. To get the intersection points, sample the curve
    /// at the corresponding values.
    pub fn line_intersections_t(&self, line: &Line<S>) -> ArrayVec<[S; 3]> {
        if line.vector.square_length() < S::EPSILON {
            return ArrayVec::new();
        }

        let from = self.from.to_vector();
        let ctrl1 = self.ctrl1.to_vector();
        let ctrl2 = self.ctrl2.to_vector();
        let to = self.to.to_vector();

        let p1 = to - from + (ctrl1 - ctrl2) * S::THREE;
        let p2 = from * S::THREE + (ctrl2 - ctrl1 * S::TWO) * S::THREE;
        let p3 = (ctrl1 - from) * S::THREE;
        let p4 = from;

        let c = line.point.y * line.vector.x - line.point.x * line.vector.y;

        let roots = cubic_polynomial_roots(
            line.vector.y * p1.x - line.vector.x * p1.y,
            line.vector.y * p2.x - line.vector.x * p2.y,
            line.vector.y * p3.x - line.vector.x * p3.y,
            line.vector.y * p4.x - line.vector.x * p4.y + c,
        );

        let mut result = ArrayVec::new();

        for root in roots {
            if root > S::ZERO && root < S::ONE {
                result.push(root);
            }
        }

        return result;
    }

    pub fn line_intersections(&self, line: &Line<S>) -> ArrayVec<[Point<S>; 3]> {
        let intersections = self.line_intersections_t(&line);

        let mut result = ArrayVec::new();
        for t in intersections {
            result.push(self.sample(t));
        }

        return result;
    }

    /// Computes the intersections (if any) between this segment a line segment.
    ///
    /// The result is provided in the form of the `t` parameters of each
    /// point along curve and segment. To get the intersection points, sample
    /// the segments at the corresponding values.
    pub fn line_segment_intersections_t(&self, segment: &LineSegment<S>) -> ArrayVec<[(S, S); 3]> {
        if !self.fast_bounding_rect().intersects(&segment.bounding_rect()) {
            return ArrayVec::new();
        }

        let intersections = self.line_intersections_t(&segment.to_line());
        let aabb = segment.bounding_rect();

        let mut result = ArrayVec::new();
        for t in intersections {
            if aabb.contains(&self.sample(t)) {
                let t2 = (self.sample(t) - segment.from).length() / segment.length();
                result.push((t,t2));
            }
        }
        return result;
    }

    #[inline]
    pub fn from(&self) -> Point<S> { self.from }

    #[inline]
    pub fn to(&self) -> Point<S> { self.to }

    pub fn line_segment_intersections(&self, segment: &LineSegment<S>) -> ArrayVec<[Point<S>; 3]> {
        let intersections = self.line_segment_intersections_t(&segment);

        let mut result = ArrayVec::new();
        for (t, _) in intersections {
            result.push(self.sample(t));
        }

        return result;
    }
}

impl<S: Scalar> Segment for CubicBezierSegment<S> { impl_segment!(S); }

impl<S: Scalar> BoundingRect for CubicBezierSegment<S> {
    type Scalar = S;
    fn bounding_rect(&self) -> Rect<S> { self.bounding_rect() }
    fn fast_bounding_rect(&self) -> Rect<S> { self.fast_bounding_rect() }
    fn bounding_range_x(&self) -> (S, S) { self.bounding_range_x() }
    fn bounding_range_y(&self) -> (S, S) { self.bounding_range_y() }
    fn fast_bounding_range_x(&self) -> (S, S) { self.fast_bounding_range_x() }
    fn fast_bounding_range_y(&self) -> (S, S) { self.fast_bounding_range_y() }
}

impl<S: Scalar> FlattenedForEach for CubicBezierSegment<S> {
    fn for_each_flattened<F: FnMut(Point<S>)>(&self, tolerance: S, call_back: &mut F) {
        self.for_each_flattened(tolerance, call_back);
    }
}

/// A monotonically increasing in x and y quadratic bézier curve segment
pub type MonotonicCubicBezierSegment<S> = Monotonic<CubicBezierSegment<S>>;

#[test]
fn fast_bounding_rect_for_cubic_bezier_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, -1.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_bounding_rect = rect(0.0, -1.0, 2.0, 2.0);

    let actual_bounding_rect = a.fast_bounding_rect();

    assert!(expected_bounding_rect == actual_bounding_rect)
}

#[test]
fn minimum_bounding_rect_for_cubic_bezier_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 2.0),
        ctrl2: Point::new(1.5, -2.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_bigger_bounding_rect: Rect<f32> = rect(0.0, -0.6, 2.0, 1.2);
    let expected_smaller_bounding_rect: Rect<f32> = rect(0.1, -0.5, 1.9, 1.0);

    let actual_minimum_bounding_rect: Rect<f32> = a.bounding_rect();

    assert!(expected_bigger_bounding_rect.contains_rect(&actual_minimum_bounding_rect));
    assert!(actual_minimum_bounding_rect.contains_rect(&expected_smaller_bounding_rect));
}

#[test]
fn y_maximum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 2.0),
    };

    let expected_y_maximum = 1.0;

    let actual_y_maximum = a.y_maximum_t();

    assert!(expected_y_maximum == actual_y_maximum)
}

#[test]
fn y_minimum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_y_minimum = 0.0;

    let actual_y_minimum = a.y_minimum_t();

    assert!(expected_y_minimum == actual_y_minimum)
}

#[test]
fn y_extrema_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(1.0, 2.0),
        ctrl2: Point::new(2.0, 2.0),
        to: Point::new(3.0, 0.0),
    };

    let mut n: u32 = 0;
    a.for_each_local_y_extremum_t(&mut |t| {
        assert_eq!(t, 0.5);
        n += 1;
    });
    assert_eq!(n, 1);
}

#[test]
fn x_extrema_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(1.0, 2.0),
        ctrl2: Point::new(1.0, 2.0),
        to: Point::new(0.0, 0.0),
    };

    let mut n: u32 = 0;
    a.for_each_local_x_extremum_t(&mut |t| {
        assert_eq!(t, 0.5);
        n += 1;
    });
    assert_eq!(n, 1);
}

#[test]
fn x_maximum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 0.0),
    };
    let expected_x_maximum = 1.0;

    let actual_x_maximum = a.x_maximum_t();

    assert!(expected_x_maximum == actual_x_maximum)
}

#[test]
fn x_minimum_t_for_simple_cubic_segment() {
    let a = CubicBezierSegment {
        from: Point::new(0.0, 0.0),
        ctrl1: Point::new(0.5, 1.0),
        ctrl2: Point::new(1.5, 1.0),
        to: Point::new(2.0, 0.0),
    };

    let expected_x_minimum = 0.0;

    let actual_x_minimum = a.x_minimum_t();

    assert!(expected_x_minimum == actual_x_minimum)
}

#[test]
fn derivatives() {
    let c1 = CubicBezierSegment {
        from: Point::new(1.0, 1.0,),
        ctrl1: Point::new(1.0, 2.0,),
        ctrl2: Point::new(2.0, 1.0,),
        to: Point::new(2.0, 2.0,),
    };

    assert_eq!(c1.dx(0.0), 0.0);
    assert_eq!(c1.dx(1.0), 0.0);
    assert_eq!(c1.dy(0.5), 0.0);
}

#[test]
fn monotonic_solve_t_for_x() {
    let c1 = CubicBezierSegment {
        from: Point::new(1.0, 1.0),
        ctrl1: Point::new(1.0, 2.0),
        ctrl2: Point::new(2.0, 1.0),
        to: Point::new(2.0, 2.0),
    };

    let tolerance = 0.0001;

    for i in 0..10u32 {
        let t = i as f32 / 10.0;
        let p = c1.sample(t);
        let t2 = c1.assume_monotonic().solve_t_for_x(p.x, 0.0..1.0, tolerance);
        // t should be pretty close to t2 but the only guarantee we have and can test
        // against is that x(t) - x(t2) is within the specified tolerance threshold.
        let x_diff = c1.x(t) - c1.x(t2);
        assert!(f32::abs(x_diff) <= tolerance);
    }
}

#[test]
fn fat_line() {
    use math::point;

    let c1 = CubicBezierSegment {
        from: point(1.0f32, 2.0),
        ctrl1: point(1.0, 3.0),
        ctrl2: point(11.0, 11.0),
        to: point(11.0, 12.0),
    };

    let (l1, l2) = c1.fat_line();

    for i in 0..100 {
        let t = i as f32 / 99.0;
        assert!(l1.signed_distance_to_point(&c1.sample(t)) >= -0.000001);
        assert!(l2.signed_distance_to_point(&c1.sample(t)) <= 0.000001);
    }

    let c2 = CubicBezierSegment {
        from: point(1.0f32, 2.0),
        ctrl1: point(1.0, 3.0),
        ctrl2: point(11.0, 14.0),
        to: point(11.0, 12.0),
    };

    let (l1, l2) = c2.fat_line();

    for i in 0..100 {
        let t = i as f32 / 99.0;
        assert!(l1.signed_distance_to_point(&c2.sample(t)) >= -0.000001);
        assert!(l2.signed_distance_to_point(&c2.sample(t)) <= 0.000001);
    }
}

#[test]
fn is_linear() {
    let mut angle = 0.0;
    let center = Point::new(1000.0, -700.0);
    for _ in 0..100 {
        for i in 0..10 {
            for j in 0..10 {
                let (sin, cos) = f64::sin_cos(angle);
                let endpoint = Vector::new(cos * 100.0, sin * 100.0);
                let curve = CubicBezierSegment {
                    from: center - endpoint,
                    ctrl1: center + endpoint.lerp(-endpoint, i as f64 / 9.0),
                    ctrl2: center + endpoint.lerp(-endpoint, j as f64 / 9.0),
                    to: center + endpoint,
                };
                assert!(curve.is_linear(1e-10));
            }
        }
        angle += 0.001;
    }
}

#[test]
fn test_monotonic() {
    use math::point;
    let curve = CubicBezierSegment {
        from: point(1.0, 1.0),
        ctrl1: point(10.0, 2.0),
        ctrl2: point(1.0, 3.0),
        to: point(10.0, 4.0),
    };

    curve.for_each_monotonic_range(&mut|range| {
        let sub_curve = curve.split_range(range);
        assert!(sub_curve.is_monotonic());
    });
}