1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
use anyhow::Result;
use async_wormhole::{
    stack::{OneMbStack, Stack},
    AsyncWormhole, AsyncYielder,
};
use lazy_static::lazy_static;
use smol::{Executor as TaskExecutor, Task};
use uptown_funk::{memory::Memory, Executor, FromWasm, HostFunctions, ToWasm};

use crate::module::LunaticModule;
use crate::{api::channel::ChannelReceiver, linker::LunaticLinker};

use log::info;
use std::mem::ManuallyDrop;
use std::{future::Future, marker::PhantomData};

use crate::api::DefaultApi;

use super::api::ProcessState;

lazy_static! {
    pub static ref EXECUTOR: TaskExecutor<'static> = TaskExecutor::new();
}

/// Used to look up a function by name or table index inside of an Instance.
pub enum FunctionLookup {
    TableIndex(u32),
    Name(&'static str),
}

/// For now we always create a new memory per instance, but eventually we will want to support
/// sharing memories between instances.
///
/// A new memory can enforce a maximum size in Wasm pages, where 1 Wasm page = 64KiB memory.
#[derive(Clone)]
pub enum MemoryChoice {
    Existing,
    New(Option<u32>),
}

/// This structure is captured inside HOST function closures passed to Wasmtime's Linker.
/// It allows us to expose Lunatic runtime functionalities inside host functions, like
/// async yields or Instance memory access.
///
/// ### Safety
///
/// Having a mutable slice of Wasmtime's memory is generally unsafe, but Lunatic always uses
/// static memories and one memory per instance. This makes it somewhat safe?
#[cfg_attr(feature = "vm-wasmer", derive(Clone))]
pub struct ProcessEnvironment<T: Clone> {
    memory: Memory,
    yielder: usize,
    yield_value: PhantomData<T>,
}

impl<T: Sized + Clone> uptown_funk::Executor for ProcessEnvironment<T> {
    type Return = T;

    #[inline(always)]
    fn async_<R, F>(&self, f: F) -> R
    where
        F: Future<Output = R>,
    {
        // The yielder should not be dropped until this process is done running.
        let mut yielder = unsafe {
            std::ptr::read(self.yielder as *const ManuallyDrop<AsyncYielder<Result<T, Error<T>>>>)
        };
        yielder.async_suspend(f)
    }

    fn memory(&self) -> Memory {
        self.memory.clone()
    }
}

// Because of a bug in Wasmtime: https://github.com/bytecodealliance/wasmtime/issues/2583
// we need to duplicate the Memory in the Linker before storing it in ProcessEnvironment,
// to not increase the reference count.
// When we are droping the memory we need to make sure we forget the value to not decrease
// the reference count.
// Safety: The ProcessEnvironment has the same lifetime as Memory, so it should be safe to
// do this.
#[cfg(feature = "vm-wasmtime")]
impl<T: Sized + Clone> Drop for ProcessEnvironment<T> {
    fn drop(&mut self) {
        let memory = std::mem::replace(&mut self.memory, Memory::Empty);
        std::mem::forget(memory)
    }
}

// For the same reason mentioned on the Drop trait we can't increase the reference count
// on the Memory when cloning.
#[cfg(feature = "vm-wasmtime")]
impl<T: Sized + Clone> Clone for ProcessEnvironment<T> {
    fn clone(&self) -> Self {
        Self {
            memory: unsafe { std::ptr::read(&self.memory as *const Memory) },
            yielder: self.yielder,
            yield_value: PhantomData::default(),
        }
    }
}

impl<T: Clone + Sized> ProcessEnvironment<T> {
    pub fn new(memory: Memory, yielder: usize) -> Self {
        Self {
            memory,
            yielder,
            yield_value: PhantomData::default(),
        }
    }
}

pub struct Error<T> {
    pub error: anyhow::Error,
    pub value: Option<T>,
}

impl<T, E: Into<anyhow::Error>> From<E> for Error<T> {
    fn from(error: E) -> Self {
        Self {
            error: error.into(),
            value: None,
        }
    }
}

/// A lunatic process represents an actor.
pub struct Process {
    task: Task<Result<(), Error<()>>>,
}

impl Process {
    pub fn task(self) -> Task<Result<(), Error<()>>> {
        self.task
    }

    /// Creates a new process with a custom API.
    pub async fn create_with_api<A>(
        module: LunaticModule,
        function: FunctionLookup,
        memory: MemoryChoice,
        api: A,
    ) -> Result<A::Return, Error<A::Return>>
    where
        A: HostFunctions + 'static + Send,
    {
        // The creation of AsyncWormhole needs to be wrapped in an async function.
        // AsyncWormhole performs linking between the new and old stack, so that tools like backtrace work correctly.
        // This linking is performed when AsyncWormhole is created and we want to postpone the creation until the
        // executor has control.
        // Otherwise it can happen that the process from which we are creating the stack from dies before the new
        // process. In this case we would link the new stack to one that gets freed, and backtrace crashes once
        // it walks into the freed stack.
        // The executor will never live on a "virtual" stack, so it's safe to create AsyncWormhole there.
        let created_at = std::time::Instant::now();

        let stack = OneMbStack::new()?;
        let mut process = AsyncWormhole::new(stack, move |yielder| {
            let yielder_ptr =
                &yielder as *const AsyncYielder<Result<A::Return, Error<A::Return>>> as usize;

            let mut linker = LunaticLinker::<A>::new(module, yielder_ptr, memory)?;
            let ret = linker.add_api(api);
            let instance = linker.instance()?;

            match function {
                FunctionLookup::Name(name) => {
                    #[cfg(feature = "vm-wasmer")]
                    let func = instance.exports.get_function(name)?;
                    #[cfg(feature = "vm-wasmtime")]
                    let func = instance.get_func(name).ok_or_else(|| {
                        anyhow::Error::msg(format!("No function {} in wasmtime instance", name))
                    })?;

                    // Measure how long the function takes for named functions.
                    let performance_timer = std::time::Instant::now();
                    func.call(&[]).map_err(|error| Error {
                        error: error.into(),
                        value: Some(ret.clone()),
                    })?;
                    info!(target: "performance", "Process {} finished in {:.5} ms.", name, performance_timer.elapsed().as_secs_f64() * 1000.0);
                }
                FunctionLookup::TableIndex(index) => {
                    #[cfg(feature = "vm-wasmer")]
                    let func = instance.exports.get_function("lunatic_spawn_by_index")?;
                    #[cfg(feature = "vm-wasmtime")]
                    let func = instance.get_func("lunatic_spawn_by_index").ok_or_else(|| {
                        anyhow::Error::msg(
                            "No function lunatic_spawn_by_index in wasmtime instance",
                        )
                    })?;

                    func.call(&[(index as i32).into()])?;
                }
            }

            Ok(ret)
        })?;

        let mut cts_saver = super::tls::CallThreadStateSave::new();
        process.set_pre_post_poll(move || cts_saver.swap());
        let ret = process.await;
        info!(target: "performance", "Total time {:.5} ms.", created_at.elapsed().as_secs_f64() * 1000.0);
        ret
    }

    /// Creates a new process using the default api.
    pub async fn create(
        context_receiver: Option<ChannelReceiver>,
        module: LunaticModule,
        function: FunctionLookup,
        memory: MemoryChoice,
    ) -> Result<(), Error<()>> {
        let api = DefaultApi::new(context_receiver, module.clone());
        Process::create_with_api(module, function, memory, api).await
    }

    /// Spawns a new process on the `EXECUTOR`
    pub fn spawn<Fut>(future: Fut) -> Self
    where
        Fut: Future<Output = Result<(), Error<()>>> + Send + 'static,
    {
        let task = EXECUTOR.spawn(future);
        Self { task }
    }
}

impl ToWasm for Process {
    type To = u32;
    type State = ProcessState;

    fn to(
        state: &mut Self::State,
        _: &impl Executor,
        process: Self,
    ) -> Result<u32, uptown_funk::Trap> {
        Ok(state.processes.add(process))
    }
}

impl FromWasm for Process {
    type From = u32;
    type State = ProcessState;

    fn from(
        state: &mut Self::State,
        _: &impl Executor,
        process_id: u32,
    ) -> Result<Self, uptown_funk::Trap>
    where
        Self: Sized,
    {
        match state.processes.remove(process_id) {
            Some(process) => Ok(process),
            None => Err(uptown_funk::Trap::new("Process not found")),
        }
    }
}