1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
//! # Lucet Runtime for Sandboxed WebAssembly Applications //! //! This crate runs programs that were compiled with the `lucetc` WebAssembly to native code //! compiler. It provides an interface for modules to be loaded from shared object files (see //! `DlModule`), and for hosts to provide specialized functionality to guests (see //! `Instance::embed_ctx()`). //! //! The runtime is a critical part of the safety and security story for Lucet. While the semantics //! of WebAssembly and the `lucetc` compiler provide many guarantees, the runtime must be correct in //! order for the assumptions of those guarantees to hold. For example, the runtime uses guard pages //! to ensure that any attempts by guest programs to access memory past the end of the guest heap are //! safely caught. //! //! The runtime is also extensible, and some of the key types are defined as traits for //! flexibility. See the `lucet-runtime-internals` crate for details. //! //! ## Running a Lucet Program //! //! There are a few essential types for using the runtime: //! //! - [`Instance`](struct.Instance.html): a Lucet program, together with its dedicated memory and //! signal handlers. Users of this API never own an `Instance` directly, but can own the //! [`InstanceHandle`](struct.InstanceHandle.html) smart pointer. //! //! - [`Region`](trait.Region.html): the memory from which instances are created. This crate //! includes [`MmapRegion`](struct.MmapRegion.html), an implementation backed by `mmap`. //! //! - [`Limits`](struct.Limits.html): upper bounds for the resources a Lucet instance may //! consume. These may be larger or smaller than the limits described in the WebAssembly module //! itself; the smaller limit is always enforced. //! //! - [`Module`](trait.Module.html): the read-only parts of a Lucet program, including its code and //! initial heap configuration. This crate includes [`DlModule`](struct.DlModule.html), an //! implementation backed by dynamic loading of shared objects. //! //! - [`Val`](enum.Val.html): an enum describing values in WebAssembly, used to provide //! arguments. These can be created using `From` implementations of primitive types, for example //! `5u64.into()` in the example below. //! //! - [`UntypedRetVal`](struct.UntypedRetVal.html): values returned from WebAssembly //! functions. These must be interpreted at the correct type by the user via `From` implementations //! or `retval.as_T()` methods, for example `u64::from(retval)` in the example below. //! //! To run a Lucet program, you start by creating a region, capable of backing a number of //! instances. You then load a module and then create a new instance using the region and the //! module. You can then run any of the functions that the Lucet program exports, retrieve return //! values from those functions, and access the linear memory of the guest. //! //! ```no_run //! use lucet_runtime::{DlModule, Limits, MmapRegion, Region}; //! //! let module = DlModule::load("/my/lucet/module.so").unwrap(); //! let region = MmapRegion::create(1, &Limits::default()).unwrap(); //! let mut inst = region.new_instance(module).unwrap(); //! //! let retval = inst.run("factorial", &[5u64.into()]).unwrap(); //! assert_eq!(u64::from(retval), 120u64); //! ``` //! //! ## Embedding With Hostcalls //! //! A "hostcall" is a function called by WebAssembly that is not defined in WebAssembly. Since //! WebAssembly is such a minimal language, hostcalls are required for Lucet programs to do anything //! interesting with the outside world. For example, in Fastly's [Terrarium //! demo](https://wasm.fastly-labs.com/), hostcalls are provided for manipulating HTTP requests, //! accessing a key/value store, etc. //! //! Some simple hostcalls can be implemented by wrapping an externed C function with the //! [`lucet_hostcalls!`](macro.lucet_hostcalls.html] macro. The function must take a special `&mut //! vmctx` argument for the guest context, similar to `&mut self` on methods. Hostcalls that require //! access to some underlying state, such as the key/value store in Terrarium, can access a custom //! embedder context through `vmctx`. For example, to make a `u32` available to hostcalls: //! //! ```no_run //! use lucet_runtime::{DlModule, Limits, MmapRegion, Region, lucet_hostcalls}; //! use lucet_runtime::vmctx::{Vmctx, lucet_vmctx}; //! //! struct MyContext { x: u32 } //! //! lucet_hostcalls! { //! #[no_mangle] //! pub unsafe extern "C" fn foo( //! &mut vmctx, //! ) -> () { //! let mut hostcall_context = vmctx.get_embed_ctx_mut::<MyContext>(); //! hostcall_context.x = 42; //! } //! } //! //! let module = DlModule::load("/my/lucet/module.so").unwrap(); //! let region = MmapRegion::create(1, &Limits::default()).unwrap(); //! let mut inst = region //! .new_instance_builder(module) //! .with_embed_ctx(MyContext { x: 0 }) //! .build() //! .unwrap(); //! //! inst.run("call_foo", &[]).unwrap(); //! //! let context_after = inst.get_embed_ctx::<MyContext>().unwrap().unwrap(); //! assert_eq!(context_after.x, 42); //! ``` //! //! The embedder context is backed by a structure that can hold a single value of any type. Rust //! embedders should add their own custom state type (like `MyContext` above) for any context they //! require, rather than using a common type (such as the `u32`) from the standard library. This //! avoids collisions between libraries, and allows for easy composition of embeddings. //! //! For C-based embedders, the type `*mut libc::c_void` is privileged as the only type that the C //! API provides. The following example shows how a Rust embedder can initialize a C-compatible //! context: //! //! ```no_run //! use lucet_runtime::{DlModule, Limits, MmapRegion, Region}; //! //! let module = DlModule::load("/my/lucet/module.so").unwrap(); //! let region = MmapRegion::create(1, &Limits::default()).unwrap(); //! #[repr(C)] //! struct MyForeignContext { x: u32 }; //! let mut foreign_ctx = Box::into_raw(Box::new(MyForeignContext{ x: 0 })); //! let mut inst = region //! .new_instance_builder(module) //! .with_embed_ctx(foreign_ctx as *mut libc::c_void) //! .build() //! .unwrap(); //! //! inst.run("main", &[]).unwrap(); //! //! // clean up embedder context //! drop(inst); //! // foreign_ctx must outlive inst, but then must be turned back into a box //! // in order to drop. //! unsafe { Box::from_raw(foreign_ctx) }; //! ``` //! //! ## Custom Signal Handlers //! //! Since Lucet programs are run as native machine code, signals such as `SIGSEGV` and `SIGFPE` can //! arise during execution. Rather than letting these signals bring down the entire process, the //! Lucet runtime installs alternate signal handlers that limit the effects to just the instance //! that raised the signal. //! //! By default, the signal handler sets the instance state to `State::Fault` and returns early from //! the call to `Instance::run()`. You can, however, implement custom error recovery and logging //! behavior by defining new signal handlers on a per-instance basis. For example, the following //! signal handler increments a counter of signals it has seen before setting the fault state: //! //! ```no_run //! use lucet_runtime::{ //! DlModule, Error, Instance, Limits, MmapRegion, Region, SignalBehavior, TrapCode, //! }; //! use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT}; //! //! static SIGNAL_COUNT: AtomicUsize = ATOMIC_USIZE_INIT; //! //! fn signal_handler_count( //! _inst: &Instance, //! _trapcode: &Option<TrapCode>, //! _signum: libc::c_int, //! _siginfo_ptr: *const libc::siginfo_t, //! _ucontext_ptr: *const libc::c_void, //! ) -> SignalBehavior { //! SIGNAL_COUNT.fetch_add(1, Ordering::SeqCst); //! SignalBehavior::Default //! } //! //! let module = DlModule::load("/my/lucet/module.so").unwrap(); //! let region = MmapRegion::create(1, &Limits::default()).unwrap(); //! let mut inst = region.new_instance(module).unwrap(); //! //! // install the handler //! inst.set_signal_handler(signal_handler_count); //! //! match inst.run("raise_a_signal", &[]) { //! Err(Error::RuntimeFault(_)) => { //! println!("I've now handled {} signals!", SIGNAL_COUNT.load(Ordering::SeqCst)); //! } //! res => panic!("unexpected result: {:?}", res), //! } //! ``` //! //! When implementing custom signal handlers for the Lucet runtime, the usual caveats about signal //! safety apply: see //! [`signal-safety(7)`](http://man7.org/linux/man-pages/man7/signal-safety.7.html). //! //! ## Interaction With Host Signal Handlers //! //! Great care must be taken if host application installs or otherwise modifies signal handlers //! anywhere in the process. Lucet installs handlers for `SIGBUS`, `SIGFPE`, `SIGILL`, and `SIGSEGV` //! when the first Lucet instance begins running, and restores the preëxisting handlers when the //! last Lucet instance terminates. During this time, other threads in the host process *must not* //! modify those signal handlers, since signal handlers can only be installed on a process-wide //! basis. //! //! Despite this limitation, Lucet is designed to compose with other signal handlers in the host //! program. If one of the above signals is caught by the Lucet signal handler, but that thread is //! not currently running a Lucet instance, the saved host signal handler is called. This means //! that, for example, a `SIGSEGV` on a non-Lucet thread of a host program will still likely abort //! the entire process. #![deny(bare_trait_objects)] pub mod c_api; pub use lucet_module_data::{PublicKey, TrapCode}; pub use lucet_runtime_internals::alloc::Limits; pub use lucet_runtime_internals::error::Error; pub use lucet_runtime_internals::instance::{ FaultDetails, Instance, InstanceHandle, SignalBehavior, TerminationDetails, }; pub use lucet_runtime_internals::module::{DlModule, Module}; pub use lucet_runtime_internals::region::mmap::MmapRegion; pub use lucet_runtime_internals::region::{InstanceBuilder, Region, RegionCreate}; pub use lucet_runtime_internals::val::{UntypedRetVal, Val}; pub use lucet_runtime_internals::{lucet_hostcall_terminate, lucet_hostcalls, WASM_PAGE_SIZE}; pub mod vmctx { //! Functions for manipulating instances from hostcalls. //! //! The Lucet compiler inserts an extra `*mut lucet_vmctx` argument to all functions defined and //! called by WebAssembly code. Through this pointer, code running in the guest context can //! access and manipulate the instance and its structures. These functions are intended for use //! in hostcall implementations, and must only be used from within a running guest. //! //! # Panics //! //! All of the `Vmctx` methods will panic if the `Vmctx` was not created from a valid pointer //! associated with a running instance. This should never occur if run in guest code on the //! pointer argument inserted by the compiler. pub use lucet_runtime_internals::vmctx::{lucet_vmctx, Vmctx}; } /// Call this if you're having trouble with `lucet_*` symbols not being exported. /// /// This is pretty hackish; we will hopefully be able to avoid this altogether once [this /// issue](https://github.com/rust-lang/rust/issues/58037) is addressed. #[no_mangle] #[doc(hidden)] pub extern "C" fn lucet_internal_ensure_linked() { self::c_api::ensure_linked(); }