1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
#![allow(improper_ctypes)] #[cfg(test)] mod tests; use crate::val::{val_to_reg, val_to_stack, RegVal, UntypedRetVal, Val}; use failure::Fail; use nix; use nix::sys::signal; use std::arch::x86_64::{__m128, _mm_setzero_ps}; use std::mem; use std::ptr::NonNull; use xfailure::xbail; /// Callee-saved general-purpose registers in the AMD64 ABI. /// /// # Layout /// /// `repr(C)` is required to preserve the ordering of members, which are read by the assembly at /// hard-coded offsets. /// /// # TODOs /// /// - Unlike the C code, this doesn't use the `packed` repr due to warnings in the Nomicon: /// <https://doc.rust-lang.org/nomicon/other-reprs.html#reprpacked>. Since the members are all /// `u64`, this should be fine? #[repr(C)] struct GpRegs { rbx: u64, rsp: u64, rbp: u64, rdi: u64, r12: u64, r13: u64, r14: u64, r15: u64, } impl GpRegs { fn new() -> Self { GpRegs { rbx: 0, rsp: 0, rbp: 0, rdi: 0, r12: 0, r13: 0, r14: 0, r15: 0, } } } /// Floating-point argument registers in the AMD64 ABI. /// /// # Layout /// /// `repr(C)` is required to preserve the ordering of members, which are read by the assembly at /// hard-coded offsets. /// /// # TODOs /// /// - Unlike the C code, this doesn't use the `packed` repr due to warnings in the Nomicon: /// <https://doc.rust-lang.org/nomicon/other-reprs.html#reprpacked>. Since the members are all /// `__m128`, this should be fine? #[repr(C)] struct FpRegs { xmm0: __m128, xmm1: __m128, xmm2: __m128, xmm3: __m128, xmm4: __m128, xmm5: __m128, xmm6: __m128, xmm7: __m128, } impl FpRegs { fn new() -> Self { let zero = unsafe { _mm_setzero_ps() }; FpRegs { xmm0: zero, xmm1: zero, xmm2: zero, xmm3: zero, xmm4: zero, xmm5: zero, xmm6: zero, xmm7: zero, } } } /// Everything we need to make a context switch: a signal mask, and the registers and return values /// that are manipulated directly by assembly code. /// /// # Layout /// /// The `repr(C)` and order of fields in this struct are very important, as the assembly code reads /// and writes hard-coded offsets from the base of the struct. Without `repr(C)`, Rust is free to /// reorder the fields. /// /// Contexts are also `repr(align(64))` in order to align to cache lines and minimize contention /// when running multiple threads. /// /// # Movement /// /// `Context` values must not be moved once they've been initialized. Contexts contain a pointer to /// their stack, which in turn contains a pointer back to the context. If the context gets moved, /// that pointer becomes invalid, and the behavior of returning from that context becomes undefined. #[repr(C, align(64))] pub struct Context { gpr: GpRegs, fpr: FpRegs, retvals_gp: [u64; 2], retval_fp: __m128, sigset: signal::SigSet, } impl Context { /// Create an all-zeroed `Context`. pub fn new() -> Self { Context { gpr: GpRegs::new(), fpr: FpRegs::new(), retvals_gp: [0; 2], retval_fp: unsafe { _mm_setzero_ps() }, sigset: signal::SigSet::empty(), } } } /// A wrapper around a `Context`, primarily meant for use in test code. /// /// Users of this library interact with contexts implicitly via `Instance` values, but for testing /// the context code independently, it is helpful to use contexts directly. /// /// # Movement of `ContextHandle` /// /// `ContextHandle` keeps a pointer to a `Context` rather than keeping all of the data directly as /// fields in order to have better control over where that data lives in memory. We always want that /// data to be heap-allocated, and to never move once it has been initialized. The `ContextHandle`, /// by contrast, should be treated like a normal Rust value with no such restrictions. /// /// Until the `Unpin` marker trait arrives in stable Rust, it is difficult to enforce this with the /// type system alone, so we use a bit of unsafety and (hopefully) clever API design to ensure that /// the data cannot be moved. /// /// We create the `Context` within a box to allocate it on the heap, then convert it into a raw /// pointer to relinquish ownership. When accessing the internal structure via the `DerefMut` trait, /// data must not be moved out of the `Context` with functions like `mem::replace`. /// /// # Layout /// /// Foreign code accesses the `internal` pointer in tests, so it is important that it is the first /// member, and that the struct is `repr(C)`. #[repr(C)] pub struct ContextHandle { internal: NonNull<Context>, } impl Drop for ContextHandle { fn drop(&mut self) { unsafe { // create a box from the pointer so that it'll get dropped // and we won't leak `Context`s Box::from_raw(self.internal.as_ptr()); } } } impl std::ops::Deref for ContextHandle { type Target = Context; fn deref(&self) -> &Self::Target { unsafe { self.internal.as_ref() } } } impl std::ops::DerefMut for ContextHandle { fn deref_mut(&mut self) -> &mut Self::Target { unsafe { self.internal.as_mut() } } } impl ContextHandle { /// Create an all-zeroed `ContextHandle`. pub fn new() -> Self { let internal = NonNull::new(Box::into_raw(Box::new(Context::new()))) .expect("Box::into_raw should never return NULL"); ContextHandle { internal } } pub fn create_and_init( stack: &mut [u64], parent: &mut ContextHandle, fptr: usize, args: &[Val], ) -> Result<ContextHandle, Error> { let mut child = ContextHandle::new(); Context::init(stack, parent, &mut child, fptr, args)?; Ok(child) } } struct CallStackBuilder<'a> { offset: usize, stack: &'a mut [u64], } impl<'a> CallStackBuilder<'a> { pub fn new(stack: &'a mut [u64]) -> Self { CallStackBuilder { offset: 0, stack } } fn push(&mut self, val: u64) { self.offset += 1; self.stack[self.stack.len() - self.offset] = val; } /// Stores `args` onto the stack such that when a return address is written after, the /// complete unit will be 16-byte aligned, as the x86_64 ABI requires. /// /// That is to say, `args` will be padded such that the current top of stack is 8-byte /// aligned. fn store_args(&mut self, args: &[u64]) { let items_end = args.len() + self.offset; if items_end % 2 == 1 { // we need to add one entry just before the arguments so that the arguments start on an // aligned address. self.push(0); } for arg in args.iter().rev() { self.push(*arg); } } fn offset(&self) -> usize { self.offset } fn into_inner(self) -> (&'a mut [u64], usize) { (self.stack, self.offset) } } impl Context { /// Initialize a new child context. /// /// - `stack`: The stack for the child; *must be 16-byte aligned*. /// /// - `parent`: The context that the child will return to. Since `swap` initializes the fields /// in its `from` argument, this will typically be an empty context from `ContextHandle::zero()` /// that will later be passed to `swap`. /// /// - `child`: The context for the child. The fields of this structure will be overwritten by /// `init`. /// /// - `fptr`: A pointer to the entrypoint for the child. Note that while the type signature here /// is for a void function of no arguments (equivalent to `void (*fptr)(void)` in C), the /// entrypoint actually can be a function of any argument or return type that corresponds to a /// `val::Val` variant. /// /// - `args`: A slice of arguments for the `fptr` entrypoint. These must match the number and /// types of `fptr`'s actual arguments exactly, otherwise swapping to this context will cause /// undefined behavior. /// /// # Errors /// /// - `Error::UnalignedStack` if the _end_ of `stack` is not 16-byte aligned. /// /// # Examples /// /// ## C entrypoint /// /// This example initializes a context that will start in a C function `entrypoint` when first /// swapped to. /// /// ```c /// void entrypoint(uint64_t x, float y); /// ``` /// /// ```no_run /// # use lucet_runtime_internals::context::Context; /// # use lucet_runtime_internals::val::Val; /// extern "C" { fn entrypoint(x: u64, y: f32); } /// // allocating an even number of `u64`s seems to reliably yield /// // properly aligned stacks, but TODO do better /// let mut stack = vec![0u64; 1024].into_boxed_slice(); /// let mut parent = Context::new(); /// let mut child = Context::new(); /// let res = Context::init( /// &mut *stack, /// &mut parent, /// &mut child, /// entrypoint as usize, /// &[Val::U64(120), Val::F32(3.14)], /// ); /// assert!(res.is_ok()); /// ``` /// /// ## Rust entrypoint /// /// This example initializes a context that will start in a Rust function `entrypoint` when /// first swapped to. Note that we mark `entrypoint` as `extern "C"` to make sure it is compiled /// with C calling conventions. /// /// ```no_run /// # use lucet_runtime_internals::context::{Context, ContextHandle}; /// # use lucet_runtime_internals::val::Val; /// extern "C" fn entrypoint(x: u64, y: f32) { } /// // allocating an even number of `u64`s seems to reliably yield /// // properly aligned stacks, but TODO do better /// let mut stack = vec![0u64; 1024].into_boxed_slice(); /// let mut parent = ContextHandle::new(); /// let mut child = Context::new(); /// let res = Context::init( /// &mut *stack, /// &mut parent, /// &mut child, /// entrypoint as usize, /// &[Val::U64(120), Val::F32(3.14)], /// ); /// assert!(res.is_ok()); /// ``` /// /// # Implementation details /// /// This prepares a stack for the child context structured as follows, assuming an 0x1000 byte /// stack: /// ```text /// 0x1000: +-------------------------+ /// 0x0ff8: | &child | /// 0x0ff0: | &parent | <-- `backstop_args`, which is stored to `rbp`. /// 0x0fe8: | NULL | // Null added if necessary for alignment. /// 0x0fe0: | spilled_arg_1 | // Guest arguments follow. /// 0x0fd8: | spilled_arg_2 | /// 0x0fd0: ~ spilled_arg_3 ~ // The three arguments here are just for show. /// 0x0fc8: | lucet_context_backstop | <-- This forms an ABI-matching call frame for fptr. /// 0x0fc0: | fptr | <-- The actual guest code we want to run. /// 0x0fb8: | lucet_context_bootstrap | <-- The guest stack pointer starts here. /// 0x0fb0: | | /// 0x0XXX: ~ ~ // Rest of the stack needs no preparation. /// 0x0000: | | /// +-------------------------+ /// ``` /// /// This packing of data on the stack is interwoven with noteworthy constraints on what the /// backstop may do: /// * The backstop must not return on the guest stack. /// - The next value will be a spilled argument or NULL. Neither are an intended address. /// * The backstop cannot have ABI-conforming spilled arguments. /// - No code runs between `fptr` and `lucet_context_backstop`, so nothing exists to /// clean up `fptr`'s arguments. `lucet_context_backstop` would have to adjust the /// stack pointer by a variable amount, and it does not, so `rsp` will continue to /// point to guest arguments. /// - This is why bootstrap recieves arguments via rbp, pointing elsewhere on the stack. /// /// The bootstrap function must be careful, but is less constrained since it can clean up /// and prepare a context for `fptr`. pub fn init( stack: &mut [u64], parent: &mut Context, child: &mut Context, fptr: usize, args: &[Val], ) -> Result<(), Error> { if !stack_is_aligned(stack) { xbail!(Error::UnalignedStack); } let mut gp_args_ix = 0; let mut fp_args_ix = 0; let mut spilled_args = vec![]; for arg in args { match val_to_reg(arg) { RegVal::GpReg(v) => { if gp_args_ix >= 6 { spilled_args.push(val_to_stack(arg)); } else { child.bootstrap_gp_ix_arg(gp_args_ix, v); gp_args_ix += 1; } } RegVal::FpReg(v) => { if fp_args_ix >= 8 { spilled_args.push(val_to_stack(arg)); } else { child.bootstrap_fp_ix_arg(fp_args_ix, v); fp_args_ix += 1; } } } } // set up an initial call stack for guests to bootstrap into and execute let mut stack_builder = CallStackBuilder::new(stack); // store arguments we'll pass to `lucet_context_swap` on the stack, above where the guest // might scribble over them. stack_builder.push(parent as *mut Context as u64); stack_builder.push(child as *mut Context as u64); // we'll pass a pointer to them via `rbp` in the guest's Context we switch to. let backstop_args = stack_builder.offset(); // we actually don't want to put an explicit pointer to these arguments anywhere. we'll // line up the rest of the stack such that these are in argument position when we jump to // `fptr`. stack_builder.store_args(spilled_args.as_slice()); // the stack must be aligned in the environment we'll execute `fptr` from - this is an ABI // requirement and can cause segfaults if not upheld. assert_eq!( stack_builder.offset() % 2, 0, "incorrect alignment for guest call frame" ); // we execute the guest code via returns, so we make a "call stack" of routines like: // -> lucet_context_backstop() // -> fptr() // -> lucet_context_bootstrap() // // with each address the start of the named function, so when the inner function // completes it returns to begin the next function up. stack_builder.push(lucet_context_backstop as u64); stack_builder.push(fptr as u64); stack_builder.push(lucet_context_bootstrap as u64); let (stack, stack_start) = stack_builder.into_inner(); // RSP, RBP, and sigset still remain to be initialized. // Stack pointer: this points to the return address that will be used by `swap`, in place // of the original (eg, in the host) return address. The return address this points to is // the address of the first function to run on `swap`: `lucet_context_bootstrap`. child.gpr.rsp = &mut stack[stack.len() - stack_start] as *mut u64 as u64; // This value in rbp is only used in `lucet_context_backstop`, where we use it to locate // the parent and child contexts to `Context::swap` with. child.gpr.rbp = &mut stack[stack.len() - backstop_args] as *mut u64 as u64; // Read the mask to be restored if we ever need to jump out of a signal handler. If this // isn't possible, die. signal::pthread_sigmask( signal::SigmaskHow::SIG_SETMASK, None, Some(&mut child.sigset), ) .expect("pthread_sigmask could not be retrieved"); Ok(()) } /// Save the current context, and swap to another context. /// /// - `from`: the current context is written here /// - `to`: the context to read from and swap to /// /// The current registers, including the stack pointer, are saved to `from`. The current stack /// pointer is then replaced by the value saved in `to.gpr.rsp`, so when `swap` returns, it will /// return to the pointer saved in `to`'s stack. /// /// If `to` was freshly initialized by passing it as the child to `init`, `swap` will return to /// the function that bootstraps arguments and then calls the entrypoint that was passed to /// `init`. /// /// If `to` was previously passed as the `from` argument to another call to `swap`, the program /// will return as if from that _first_ call to `swap`. /// /// # Safety /// /// The value in `to.gpr.rsp` must be a valid pointer into the stack that was originally passed /// to `init` when the `to` context was initialized, or to the original stack created implicitly /// by Rust. /// /// The registers saved in the `to` context must match the arguments expected by the entrypoint /// of the function passed to `init`, or be unaltered from when they were previously written by /// `swap`. /// /// If `from` is never returned to, `swap`ped to, or `set` to, resources could leak due to /// implicit `drop`s never being called: /// /// ```no_run /// # use lucet_runtime_internals::context::Context; /// fn f(x: Box<u64>, child: &Context) { /// let mut xs = vec![187; 410757864530]; /// xs[0] += *x; /// /// // manually drop here to avoid leaks /// drop(x); /// drop(xs); /// /// let mut parent = Context::new(); /// unsafe { Context::swap(&mut parent, child); } /// // implicit `drop(x)` and `drop(xs)` here never get called unless we swap back /// } /// ``` /// /// # Examples /// /// The typical case is to initialize a new child context, and then swap to it from a zeroed /// parent context. /// /// ```no_run /// # use lucet_runtime_internals::context::Context; /// # extern "C" fn entrypoint() {} /// # let mut stack = vec![0u64; 1024].into_boxed_slice(); /// let mut parent = Context::new(); /// let mut child = Context::new(); /// Context::init( /// &mut stack, /// &mut parent, /// &mut child, /// entrypoint as usize, /// &[], /// ).unwrap(); /// /// unsafe { Context::swap(&mut parent, &child); } /// ``` #[inline] pub unsafe fn swap(from: &mut Context, to: &Context) { lucet_context_swap(from as *mut Context, to as *const Context); } /// Swap to another context without saving the current context. /// /// - `to`: the context to read from and swap to /// /// The current registers, including the stack pointer, are discarded. The current stack pointer /// is then replaced by the value saved in `to.gpr.rsp`, so when `swap` returns, it will return /// to the pointer saved in `to`'s stack. /// /// If `to` was freshly initialized by passing it as the child to `init`, `swap` will return to /// the function that bootstraps arguments and then calls the entrypoint that was passed to /// `init`. /// /// If `to` was previously passed as the `from` argument to another call to `swap`, the program /// will return as if from the call to `swap`. /// /// # Safety /// /// ## Stack and registers /// /// The value in `to.gpr.rsp` must be a valid pointer into the stack that was originally passed /// to `init` when the context was initialized, or to the original stack created implicitly by /// Rust. /// /// The registers saved in `to` must match the arguments expected by the entrypoint of the /// function passed to `init`, or be unaltered from when they were previously written by `swap`. /// /// ## Returning /// /// If `to` is a context freshly initialized by `init`, at least one of the following must be /// true, otherwise the program will return to a context with uninitialized registers: /// /// - The `fptr` argument to `init` is a function that never returns /// /// - The `parent` argument to `init` was passed as the `from` argument to `swap` before this /// call to `set` /// /// ## Resource leaks /// /// Since control flow will not return to the calling context, care must be taken to ensure that /// any resources owned by the calling context are manually dropped. The implicit `drop`s /// inserted by Rust at the end of the calling scope will not be reached: /// /// ```no_run /// # use lucet_runtime_internals::context::Context; /// fn f(x: Box<u64>, child: &Context) { /// let mut xs = vec![187; 410757864530]; /// xs[0] += *x; /// /// // manually drop here to avoid leaks /// drop(x); /// drop(xs); /// /// unsafe { Context::set(child); } /// // implicit `drop(x)` and `drop(xs)` here never get called /// } /// ``` #[inline] pub unsafe fn set(to: &Context) -> ! { lucet_context_set(to as *const Context); } /// Like `set`, but also manages the return from a signal handler. /// /// TODO: the return type of this function should really be `Result<!, nix::Error>`, but using /// `!` as a type like that is currently experimental. #[inline] pub unsafe fn set_from_signal(to: &Context) -> Result<(), nix::Error> { signal::pthread_sigmask(signal::SigmaskHow::SIG_SETMASK, Some(&to.sigset), None)?; Context::set(to) } /// Clear (zero) return values. pub fn clear_retvals(&mut self) { self.retvals_gp = [0; 2]; let zero = unsafe { _mm_setzero_ps() }; self.retval_fp = zero; } /// Get the general-purpose return value at index `idx`. /// /// If this method is called before the context has returned from its original entrypoint, the /// result will be `0`. pub fn get_retval_gp(&self, idx: usize) -> u64 { self.retvals_gp[idx] } /// Get the floating point return value. /// /// If this method is called before the context has returned from its original entrypoint, the /// result will be `0.0`. pub fn get_retval_fp(&self) -> __m128 { self.retval_fp } /// Get the return value as an `UntypedRetVal`. /// /// This combines the 0th general-purpose return value, and the single floating-point return value. pub fn get_untyped_retval(&self) -> UntypedRetVal { let gp = self.get_retval_gp(0); let fp = self.get_retval_fp(); UntypedRetVal::new(gp, fp) } /// Put one of the first 6 general-purpose arguments into a `Context` register. /// /// Although these registers are callee-saved registers rather than argument registers, they get /// moved into argument registers by `lucet_context_bootstrap`. /// /// - `ix`: ABI general-purpose argument number /// - `arg`: argument value fn bootstrap_gp_ix_arg(&mut self, ix: usize, arg: u64) { match ix { // rdi lives across bootstrap 0 => self.gpr.rdi = arg, // bootstraps into rsi 1 => self.gpr.r12 = arg, // bootstraps into rdx 2 => self.gpr.r13 = arg, // bootstraps into rcx 3 => self.gpr.r14 = arg, // bootstraps into r8 4 => self.gpr.r15 = arg, // bootstraps into r9 5 => self.gpr.rbx = arg, _ => panic!("unexpected gp register index {}", ix), } } /// Put one of the first 8 floating-point arguments into a `Context` register. /// /// - `ix`: ABI floating-point argument number /// - `arg`: argument value fn bootstrap_fp_ix_arg(&mut self, ix: usize, arg: __m128) { match ix { 0 => self.fpr.xmm0 = arg, 1 => self.fpr.xmm1 = arg, 2 => self.fpr.xmm2 = arg, 3 => self.fpr.xmm3 = arg, 4 => self.fpr.xmm4 = arg, 5 => self.fpr.xmm5 = arg, 6 => self.fpr.xmm6 = arg, 7 => self.fpr.xmm7 = arg, _ => panic!("unexpected fp register index {}", ix), } } } /// Errors that may arise when working with contexts. #[derive(Debug, Fail)] pub enum Error { /// Raised when the bottom of the stack provided to `Context::init` is not 16-byte aligned #[fail(display = "context initialized with unaligned stack")] UnalignedStack, } /// Check whether the bottom (highest address) of the stack is 16-byte aligned, as required by the /// ABI. fn stack_is_aligned(stack: &[u64]) -> bool { let size = stack.len(); let last_elt_addr = &stack[size - 1] as *const u64 as usize; let bottom_addr = last_elt_addr + mem::size_of::<u64>(); bottom_addr % 16 == 0 } extern "C" { /// Bootstraps arguments and calls the entrypoint via returning; implemented in assembly. /// /// Loads general-purpose arguments from the callee-saved registers in a `Context` to the /// appropriate argument registers for the AMD64 ABI, and then returns to the entrypoint. fn lucet_context_bootstrap(); /// Stores return values into the parent context, and then swaps to it; implemented in assembly. /// /// This is where the entrypoint function returns to, so that we swap back to the parent on /// return. fn lucet_context_backstop(); /// Saves the current context and performs the context switch. Implemented in assembly. fn lucet_context_swap(from: *mut Context, to: *const Context); /// Performs the context switch; implemented in assembly. /// /// Never returns because the current context is discarded. fn lucet_context_set(to: *const Context) -> !; }