lsm_tree/tree/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
// Copyright (c) 2024-present, fjall-rs
// This source code is licensed under both the Apache 2.0 and MIT License
// (found in the LICENSE-* files in the repository)

pub mod inner;

use crate::{
    coding::{Decode, Encode},
    compaction::{stream::CompactionStream, CompactionStrategy},
    config::Config,
    descriptor_table::FileDescriptorTable,
    level_manifest::LevelManifest,
    manifest::Manifest,
    memtable::Memtable,
    range::{prefix_to_range, MemtableLockGuard, TreeIter},
    segment::{
        block_index::{full_index::FullBlockIndex, BlockIndexImpl},
        meta::TableType,
        Segment, SegmentInner,
    },
    stop_signal::StopSignal,
    value::InternalValue,
    version::Version,
    AbstractTree, BlockCache, KvPair, SegmentId, SeqNo, Snapshot, UserKey, UserValue, ValueType,
};
use inner::{MemtableId, SealedMemtables, TreeId, TreeInner};
use std::{
    io::Cursor,
    ops::RangeBounds,
    path::Path,
    sync::{atomic::AtomicU64, Arc, RwLock, RwLockReadGuard, RwLockWriteGuard},
};

fn ignore_tombstone_value(item: InternalValue) -> Option<InternalValue> {
    if item.is_tombstone() {
        None
    } else {
        Some(item)
    }
}

/// A log-structured merge tree (LSM-tree/LSMT)
#[derive(Clone)]
pub struct Tree(#[doc(hidden)] pub Arc<TreeInner>);

impl std::ops::Deref for Tree {
    type Target = TreeInner;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl AbstractTree for Tree {
    fn size_of<K: AsRef<[u8]>>(&self, key: K, seqno: Option<SeqNo>) -> crate::Result<Option<u32>> {
        Ok(self.get(key, seqno)?.map(|x| x.len() as u32))
    }

    fn bloom_filter_size(&self) -> usize {
        self.levels
            .read()
            .expect("lock is poisoned")
            .iter()
            .map(|x| x.bloom_filter_size())
            .sum()
    }

    fn sealed_memtable_count(&self) -> usize {
        self.sealed_memtables
            .read()
            .expect("lock is poisoned")
            .len()
    }

    fn is_first_level_disjoint(&self) -> bool {
        self.levels
            .read()
            .expect("lock is poisoned")
            .levels
            .first()
            .expect("first level should exist")
            .is_disjoint
    }

    fn verify(&self) -> crate::Result<usize> {
        // NOTE: Lock memtable to prevent any tampering with disk segments
        let _lock = self.lock_active_memtable();

        let mut sum = 0;

        let level_manifest = self.levels.read().expect("lock is poisoned");

        for level in &level_manifest.levels {
            for segment in &level.segments {
                sum += segment.verify()?;
            }
        }

        Ok(sum)
    }

    fn keys(
        &self,
        seqno: Option<SeqNo>,
        index: Option<Arc<Memtable>>,
    ) -> Box<dyn DoubleEndedIterator<Item = crate::Result<UserKey>> + 'static> {
        Box::new(self.create_iter(seqno, index).map(|x| x.map(|(k, _)| k)))
    }

    fn values(
        &self,
        seqno: Option<SeqNo>,
        index: Option<Arc<Memtable>>,
    ) -> Box<dyn DoubleEndedIterator<Item = crate::Result<UserValue>> + 'static> {
        Box::new(self.create_iter(seqno, index).map(|x| x.map(|(_, v)| v)))
    }

    fn flush_memtable(
        &self,
        segment_id: SegmentId,
        memtable: &Arc<Memtable>,
        seqno_threshold: SeqNo,
    ) -> crate::Result<Option<Segment>> {
        use crate::{
            file::SEGMENTS_FOLDER,
            segment::writer::{Options, Writer},
        };

        let start = std::time::Instant::now();

        let folder = self.config.path.join(SEGMENTS_FOLDER);
        log::debug!("writing segment to {folder:?}");

        let mut segment_writer = Writer::new(Options {
            segment_id,
            folder,
            data_block_size: self.config.data_block_size,
            index_block_size: self.config.index_block_size,
        })?
        .use_compression(self.config.compression);

        {
            use crate::segment::writer::BloomConstructionPolicy;

            if self.config.bloom_bits_per_key >= 0 {
                segment_writer =
                    segment_writer.use_bloom_policy(BloomConstructionPolicy::FpRate(0.00001));
            } else {
                segment_writer =
                    segment_writer.use_bloom_policy(BloomConstructionPolicy::BitsPerKey(0));
            }
        }

        let iter = memtable.iter().map(Ok);
        let compaction_filter = CompactionStream::new(iter, seqno_threshold);

        for item in compaction_filter {
            segment_writer.write(item?)?;
        }

        let result = self.consume_writer(segment_id, segment_writer)?;

        log::debug!("Flushed memtable {segment_id:?} in {:?}", start.elapsed());

        Ok(result)
    }

    fn register_segments(&self, segments: &[Segment]) -> crate::Result<()> {
        // NOTE: Mind lock order L -> M -> S
        log::trace!("Acquiring levels manifest write lock");
        let mut original_levels = self.levels.write().expect("lock is poisoned");

        // NOTE: Mind lock order L -> M -> S
        log::trace!("Acquiring sealed memtables write lock");
        let mut sealed_memtables = self.sealed_memtables.write().expect("lock is poisoned");

        original_levels.atomic_swap(|recipe| {
            for segment in segments.iter().cloned() {
                recipe
                    .first_mut()
                    .expect("first level should exist")
                    .insert(segment);
            }
        })?;

        // eprintln!("{original_levels}");

        for segment in segments {
            log::trace!("releasing sealed memtable {}", segment.id());
            sealed_memtables.remove(segment.id());
        }

        Ok(())
    }

    fn lock_active_memtable(&self) -> RwLockWriteGuard<'_, Memtable> {
        self.active_memtable.write().expect("lock is poisoned")
    }

    fn set_active_memtable(&self, memtable: Memtable) {
        let mut memtable_lock = self.active_memtable.write().expect("lock is poisoned");
        *memtable_lock = memtable;
    }

    fn add_sealed_memtable(&self, id: MemtableId, memtable: Arc<Memtable>) {
        let mut memtable_lock = self.sealed_memtables.write().expect("lock is poisoned");
        memtable_lock.add(id, memtable);
    }

    fn compact(
        &self,
        strategy: Arc<dyn CompactionStrategy>,
        seqno_threshold: SeqNo,
    ) -> crate::Result<()> {
        use crate::compaction::worker::{do_compaction, Options};

        let mut opts = Options::from_tree(self, strategy);
        opts.eviction_seqno = seqno_threshold;
        do_compaction(&opts)?;

        log::debug!("lsm-tree: compaction run over");

        Ok(())
    }

    fn get_next_segment_id(&self) -> SegmentId {
        self.0.get_next_segment_id()
    }

    fn tree_config(&self) -> &Config {
        &self.config
    }

    fn active_memtable_size(&self) -> u32 {
        use std::sync::atomic::Ordering::Acquire;

        self.active_memtable
            .read()
            .expect("lock is poisoned")
            .approximate_size
            .load(Acquire)
    }

    fn tree_type(&self) -> crate::TreeType {
        crate::TreeType::Standard
    }

    fn rotate_memtable(&self) -> Option<(MemtableId, Arc<Memtable>)> {
        log::trace!("rotate: acquiring active memtable write lock");
        let mut active_memtable = self.lock_active_memtable();

        log::trace!("rotate: acquiring sealed memtables write lock");
        let mut sealed_memtables = self.lock_sealed_memtables();

        if active_memtable.is_empty() {
            return None;
        }

        let yanked_memtable = std::mem::take(&mut *active_memtable);
        let yanked_memtable = Arc::new(yanked_memtable);

        let tmp_memtable_id = self.get_next_segment_id();
        sealed_memtables.add(tmp_memtable_id, yanked_memtable.clone());

        log::trace!("rotate: added memtable id={tmp_memtable_id} to sealed memtables");

        Some((tmp_memtable_id, yanked_memtable))
    }

    fn segment_count(&self) -> usize {
        self.levels.read().expect("lock is poisoned").len()
    }

    fn first_level_segment_count(&self) -> usize {
        self.levels
            .read()
            .expect("lock is poisoned")
            .first_level_segment_count()
    }

    #[allow(clippy::significant_drop_tightening)]
    fn approximate_len(&self) -> usize {
        // NOTE: Mind lock order L -> M -> S
        let levels = self.levels.read().expect("lock is poisoned");
        let memtable = self.active_memtable.read().expect("lock is poisoned");
        let sealed = self.sealed_memtables.read().expect("lock is poisoned");

        let segments_item_count = levels.iter().map(|x| x.metadata.item_count).sum::<u64>();
        let memtable_count = memtable.len() as u64;
        let sealed_count = sealed.iter().map(|(_, mt)| mt.len()).sum::<usize>() as u64;

        (memtable_count + sealed_count + segments_item_count)
            .try_into()
            .expect("should not be too large")
    }

    fn disk_space(&self) -> u64 {
        let levels = self.levels.read().expect("lock is poisoned");
        levels.iter().map(|x| x.metadata.file_size).sum()
    }

    fn get_highest_memtable_seqno(&self) -> Option<SeqNo> {
        let active = self
            .active_memtable
            .read()
            .expect("lock is poisoned")
            .get_highest_seqno();

        let sealed = self
            .sealed_memtables
            .read()
            .expect("Lock is poisoned")
            .iter()
            .map(|(_, table)| table.get_highest_seqno())
            .max()
            .flatten();

        active.max(sealed)
    }

    fn get_highest_persisted_seqno(&self) -> Option<SeqNo> {
        let levels = self.levels.read().expect("lock is poisoned");
        levels
            .iter()
            .map(super::segment::Segment::get_highest_seqno)
            .max()
    }

    fn snapshot(&self, seqno: SeqNo) -> Snapshot {
        use crate::AnyTree::Standard;

        Snapshot::new(Standard(self.clone()), seqno)
    }

    fn get<K: AsRef<[u8]>>(
        &self,
        key: K,
        seqno: Option<SeqNo>,
    ) -> crate::Result<Option<UserValue>> {
        Ok(self.get_internal_entry(key, seqno)?.map(|x| x.value))
    }

    fn range<K: AsRef<[u8]>, R: RangeBounds<K>>(
        &self,
        range: R,
        seqno: Option<SeqNo>,
        index: Option<Arc<Memtable>>,
    ) -> Box<dyn DoubleEndedIterator<Item = crate::Result<KvPair>> + 'static> {
        Box::new(self.create_range(&range, seqno, index))
    }

    fn prefix<K: AsRef<[u8]>>(
        &self,
        prefix: K,
        seqno: Option<SeqNo>,
        index: Option<Arc<Memtable>>,
    ) -> Box<dyn DoubleEndedIterator<Item = crate::Result<KvPair>> + 'static> {
        Box::new(self.create_prefix(prefix, seqno, index))
    }

    fn insert<K: Into<UserKey>, V: Into<UserValue>>(
        &self,
        key: K,
        value: V,
        seqno: SeqNo,
    ) -> (u32, u32) {
        let value = InternalValue::from_components(key, value, seqno, ValueType::Value);
        self.append_entry(value)
    }

    fn remove<K: Into<UserKey>>(&self, key: K, seqno: SeqNo) -> (u32, u32) {
        let value = InternalValue::new_tombstone(key, seqno);
        self.append_entry(value)
    }

    fn remove_weak<K: Into<UserKey>>(&self, key: K, seqno: SeqNo) -> (u32, u32) {
        let value = InternalValue::new_weak_tombstone(key, seqno);
        self.append_entry(value)
    }
}

impl Tree {
    /// Opens an LSM-tree in the given directory.
    ///
    /// Will recover previous state if the folder was previously
    /// occupied by an LSM-tree, including the previous configuration.
    /// If not, a new tree will be initialized with the given config.
    ///
    /// After recovering a previous state, use [`Tree::set_active_memtable`]
    /// to fill the memtable with data from a write-ahead log for full durability.
    ///
    /// # Errors
    ///
    /// Returns error, if an IO error occurred.
    pub(crate) fn open(config: Config) -> crate::Result<Self> {
        use crate::file::MANIFEST_FILE;

        log::debug!("Opening LSM-tree at {:?}", config.path);

        // Check for old version
        if config.path.join("version").try_exists()? {
            return Err(crate::Error::InvalidVersion(Version::V1));
        }

        let tree = if config.path.join(MANIFEST_FILE).try_exists()? {
            Self::recover(config)
        } else {
            Self::create_new(config)
        }?;

        Ok(tree)
    }

    pub(crate) fn read_lock_active_memtable(&self) -> RwLockReadGuard<'_, Memtable> {
        self.active_memtable.read().expect("lock is poisoned")
    }

    // TODO: Expose as public function, however:
    // TODO: Right now this is somewhat unsafe to expose as
    // major compaction needs ALL segments, right now it just takes as many
    // as it can, which may make the LSM inconsistent.
    // TODO: There should also be a function to partially compact levels and individual segments

    /// Performs major compaction, blocking the caller until it's done.
    ///
    /// # Errors
    ///
    /// Will return `Err` if an IO error occurs.
    #[doc(hidden)]
    pub fn major_compact(&self, target_size: u64, seqno_threshold: SeqNo) -> crate::Result<()> {
        log::info!("Starting major compaction");
        let strategy = Arc::new(crate::compaction::major::Strategy::new(target_size));
        self.compact(strategy, seqno_threshold)
    }

    pub(crate) fn consume_writer(
        &self,
        segment_id: SegmentId,
        mut writer: crate::segment::writer::Writer,
    ) -> crate::Result<Option<Segment>> {
        let segment_folder = writer.opts.folder.clone();
        let segment_file_path = segment_folder.join(segment_id.to_string());

        let Some(trailer) = writer.finish()? else {
            return Ok(None);
        };

        log::debug!("Finalized segment write at {segment_folder:?}");

        let block_index =
            FullBlockIndex::from_file(&segment_file_path, &trailer.metadata, &trailer.offsets)?;
        let block_index = Arc::new(BlockIndexImpl::Full(block_index));

        let created_segment: Segment = SegmentInner {
            tree_id: self.id,

            metadata: trailer.metadata,
            offsets: trailer.offsets,

            descriptor_table: self.config.descriptor_table.clone(),
            block_index,
            block_cache: self.config.block_cache.clone(),

            bloom_filter: Segment::load_bloom(&segment_file_path, trailer.offsets.bloom_ptr)?,
        }
        .into();

        self.config
            .descriptor_table
            .insert(segment_file_path, created_segment.global_id());

        log::debug!("Flushed segment to {segment_folder:?}");

        Ok(Some(created_segment))
    }

    /// Synchronously flushes the active memtable to a disk segment.
    ///
    /// The function may not return a result, if, during concurrent workloads, the memtable
    /// ends up being empty before the flush thread is set up.
    ///
    /// The result will contain the disk segment's path, relative to the tree's base path.
    ///
    /// # Errors
    ///
    /// Will return `Err` if an IO error occurs.
    #[doc(hidden)]
    pub fn flush_active_memtable(&self, seqno_threshold: SeqNo) -> crate::Result<Option<Segment>> {
        log::debug!("Flushing active memtable");

        let Some((segment_id, yanked_memtable)) = self.rotate_memtable() else {
            return Ok(None);
        };

        let Some(segment) = self.flush_memtable(segment_id, &yanked_memtable, seqno_threshold)?
        else {
            return Ok(None);
        };
        self.register_segments(&[segment.clone()])?;

        Ok(Some(segment))
    }

    /// Returns `true` if there are some segments that are being compacted.
    #[doc(hidden)]
    #[must_use]
    pub fn is_compacting(&self) -> bool {
        let levels = self.levels.read().expect("lock is poisoned");
        levels.is_compacting()
    }

    /// Write-locks the sealed memtables for exclusive access
    fn lock_sealed_memtables(&self) -> RwLockWriteGuard<'_, SealedMemtables> {
        self.sealed_memtables.write().expect("lock is poisoned")
    }

    /// Used for [`BlobTree`] lookup
    pub(crate) fn get_internal_entry_with_lock<K: AsRef<[u8]>>(
        &self,
        memtable_lock: &RwLockWriteGuard<'_, Memtable>,
        key: K,
        seqno: Option<SeqNo>,
    ) -> crate::Result<Option<InternalValue>> {
        if let Some(entry) = memtable_lock.get(&key, seqno) {
            return Ok(ignore_tombstone_value(entry));
        };

        // Now look in sealed memtables
        if let Some(entry) = self.get_internal_entry_from_sealed_memtables(&key, seqno) {
            return Ok(ignore_tombstone_value(entry));
        }

        self.get_internal_entry_from_segments(key, seqno)
    }

    fn get_internal_entry_from_sealed_memtables<K: AsRef<[u8]>>(
        &self,
        key: K,
        seqno: Option<SeqNo>,
    ) -> Option<InternalValue> {
        let memtable_lock = self.sealed_memtables.read().expect("lock is poisoned");

        for (_, memtable) in memtable_lock.iter().rev() {
            if let Some(entry) = memtable.get(&key, seqno) {
                return Some(entry);
            }
        }

        None
    }

    fn get_internal_entry_from_segments<K: AsRef<[u8]>>(
        &self,
        key: K,
        seqno: Option<SeqNo>,
    ) -> crate::Result<Option<InternalValue>> {
        // NOTE: Create key hash for hash sharing
        // https://fjall-rs.github.io/post/bloom-filter-hash-sharing/
        let key_hash = crate::bloom::BloomFilter::get_hash(key.as_ref());

        let level_manifest = self.levels.read().expect("lock is poisoned");

        for level in &level_manifest.levels {
            // NOTE: Based on benchmarking, binary search is only worth it with ~4 segments
            if level.len() >= 4 {
                if let Some(level) = level.as_disjoint() {
                    // TODO: unit test in disjoint level:
                    // [a:5, a:4] [a:3, b:5]
                    // ^
                    // snapshot read a:3!!!

                    if let Some(segment) = level.get_segment_containing_key(&key) {
                        let maybe_item = segment.get(&key, seqno, key_hash)?;

                        if let Some(item) = maybe_item {
                            return Ok(ignore_tombstone_value(item));
                        }
                    }

                    // NOTE: Go to next level
                    continue;
                }
            }

            // NOTE: Fallback to linear search
            for segment in &level.segments {
                let maybe_item = segment.get(&key, seqno, key_hash)?;

                if let Some(item) = maybe_item {
                    return Ok(ignore_tombstone_value(item));
                }
            }
        }

        Ok(None)
    }

    #[doc(hidden)]
    pub fn get_internal_entry<K: AsRef<[u8]>>(
        &self,
        key: K,
        seqno: Option<SeqNo>,
    ) -> crate::Result<Option<InternalValue>> {
        // TODO: consolidate memtable & sealed behind single RwLock

        let memtable_lock = self.active_memtable.read().expect("lock is poisoned");

        if let Some(entry) = memtable_lock.get(&key, seqno) {
            return Ok(ignore_tombstone_value(entry));
        };

        drop(memtable_lock);

        // Now look in sealed memtables
        if let Some(entry) = self.get_internal_entry_from_sealed_memtables(&key, seqno) {
            return Ok(ignore_tombstone_value(entry));
        }

        // Now look in segments... this may involve disk I/O
        self.get_internal_entry_from_segments(key, seqno)
    }

    #[doc(hidden)]
    #[must_use]
    pub fn create_iter(
        &self,
        seqno: Option<SeqNo>,
        ephemeral: Option<Arc<Memtable>>,
    ) -> impl DoubleEndedIterator<Item = crate::Result<KvPair>> + 'static {
        self.create_range::<UserKey, _>(&.., seqno, ephemeral)
    }

    #[doc(hidden)]
    pub fn create_internal_range<'a, K: AsRef<[u8]> + 'a, R: RangeBounds<K> + 'a>(
        &'a self,
        range: &'a R,
        seqno: Option<SeqNo>,
        ephemeral: Option<Arc<Memtable>>,
    ) -> impl DoubleEndedIterator<Item = crate::Result<InternalValue>> + 'static {
        use std::ops::Bound::{self, Excluded, Included, Unbounded};

        let lo: Bound<UserKey> = match range.start_bound() {
            Included(x) => Included(x.as_ref().into()),
            Excluded(x) => Excluded(x.as_ref().into()),
            Unbounded => Unbounded,
        };

        let hi: Bound<UserKey> = match range.end_bound() {
            Included(x) => Included(x.as_ref().into()),
            Excluded(x) => Excluded(x.as_ref().into()),
            Unbounded => Unbounded,
        };

        let bounds: (Bound<UserKey>, Bound<UserKey>) = (lo, hi);

        // NOTE: Mind lock order L -> M -> S
        let level_manifest_lock =
            guardian::ArcRwLockReadGuardian::take(self.levels.clone()).expect("lock is poisoned");

        let active = guardian::ArcRwLockReadGuardian::take(self.active_memtable.clone())
            .expect("lock is poisoned");

        let sealed = guardian::ArcRwLockReadGuardian::take(self.sealed_memtables.clone())
            .expect("lock is poisoned");

        TreeIter::create_range(
            MemtableLockGuard {
                active,
                sealed,
                ephemeral,
            },
            bounds,
            seqno,
            level_manifest_lock,
        )
    }

    #[doc(hidden)]
    pub fn create_range<'a, K: AsRef<[u8]> + 'a, R: RangeBounds<K> + 'a>(
        &'a self,
        range: &'a R,
        seqno: Option<SeqNo>,
        ephemeral: Option<Arc<Memtable>>,
    ) -> impl DoubleEndedIterator<Item = crate::Result<KvPair>> + 'static {
        self.create_internal_range(range, seqno, ephemeral)
            .map(|item| match item {
                Ok(kv) => Ok((kv.key.user_key, kv.value)),
                Err(e) => Err(e),
            })
    }

    #[doc(hidden)]
    pub fn create_prefix<'a, K: AsRef<[u8]> + 'a>(
        &'a self,
        prefix: K,
        seqno: Option<SeqNo>,
        ephemeral: Option<Arc<Memtable>>,
    ) -> impl DoubleEndedIterator<Item = crate::Result<KvPair>> + 'static {
        let range = prefix_to_range(prefix.as_ref());
        self.create_range(&range, seqno, ephemeral)
    }

    /// Adds an item to the active memtable.
    ///
    /// Returns the added item's size and new size of the memtable.
    #[doc(hidden)]
    #[must_use]
    pub fn append_entry(&self, value: InternalValue) -> (u32, u32) {
        let memtable_lock = self.active_memtable.read().expect("lock is poisoned");
        memtable_lock.insert(value)
    }

    /// Recovers previous state, by loading the level manifest and segments.
    ///
    /// # Errors
    ///
    /// Returns error, if an IO error occurred.
    fn recover(mut config: Config) -> crate::Result<Self> {
        use crate::file::MANIFEST_FILE;
        use inner::get_next_tree_id;

        log::info!("Recovering LSM-tree at {:?}", config.path);

        let bytes = std::fs::read(config.path.join(MANIFEST_FILE))?;
        let mut bytes = Cursor::new(bytes);
        let manifest = Manifest::decode_from(&mut bytes)?;

        if manifest.version != Version::V2 {
            return Err(crate::Error::InvalidVersion(manifest.version));
        }

        // IMPORTANT: Restore persisted config
        config.level_count = manifest.level_count;
        config.table_type = manifest.table_type;
        config.tree_type = manifest.tree_type;

        let tree_id = get_next_tree_id();

        let mut levels = Self::recover_levels(
            &config.path,
            tree_id,
            &config.block_cache,
            &config.descriptor_table,
        )?;
        levels.update_metadata();

        let highest_segment_id = levels.iter().map(Segment::id).max().unwrap_or_default();

        let inner = TreeInner {
            id: tree_id,
            segment_id_counter: Arc::new(AtomicU64::new(highest_segment_id + 1)),
            active_memtable: Arc::default(),
            sealed_memtables: Arc::default(),
            levels: Arc::new(RwLock::new(levels)),
            stop_signal: StopSignal::default(),
            config,
        };

        Ok(Self(Arc::new(inner)))
    }

    /// Creates a new LSM-tree in a directory.
    fn create_new(config: Config) -> crate::Result<Self> {
        use crate::file::{fsync_directory, MANIFEST_FILE, SEGMENTS_FOLDER};
        use std::fs::{create_dir_all, File};

        let path = config.path.clone();
        log::trace!("Creating LSM-tree at {path:?}");

        create_dir_all(&path)?;

        let manifest_path = path.join(MANIFEST_FILE);
        assert!(!manifest_path.try_exists()?);

        let segment_folder_path = path.join(SEGMENTS_FOLDER);
        create_dir_all(&segment_folder_path)?;

        // NOTE: Lastly, fsync version marker, which contains the version
        // -> the LSM is fully initialized
        let mut file = File::create(manifest_path)?;
        Manifest {
            version: Version::V2,
            level_count: config.level_count,
            tree_type: config.tree_type,
            table_type: TableType::Block,
        }
        .encode_into(&mut file)?;
        file.sync_all()?;

        // IMPORTANT: fsync folders on Unix
        fsync_directory(&segment_folder_path)?;
        fsync_directory(&path)?;

        let inner = TreeInner::create_new(config)?;
        Ok(Self(Arc::new(inner)))
    }

    /// Recovers the level manifest, loading all segments from disk.
    fn recover_levels<P: AsRef<Path>>(
        tree_path: P,
        tree_id: TreeId,
        block_cache: &Arc<BlockCache>,
        descriptor_table: &Arc<FileDescriptorTable>,
    ) -> crate::Result<LevelManifest> {
        use crate::{
            file::fsync_directory,
            file::{LEVELS_MANIFEST_FILE, SEGMENTS_FOLDER},
            SegmentId,
        };

        let tree_path = tree_path.as_ref();

        let level_manifest_path = tree_path.join(LEVELS_MANIFEST_FILE);
        log::info!("Recovering manifest at {level_manifest_path:?}");

        let segment_id_map = LevelManifest::recover_ids(&level_manifest_path)?;
        let cnt = segment_id_map.len();

        log::debug!("Recovering {cnt} disk segments from {tree_path:?}");

        let progress_mod = match cnt {
            _ if cnt <= 20 => 1,
            _ if cnt <= 100 => 10,
            _ => 100,
        };

        let mut segments = vec![];

        let segment_base_folder = tree_path.join(SEGMENTS_FOLDER);

        if !segment_base_folder.try_exists()? {
            std::fs::create_dir_all(&segment_base_folder)?;
            fsync_directory(&segment_base_folder)?;
        }

        for (idx, dirent) in std::fs::read_dir(&segment_base_folder)?.enumerate() {
            let dirent = dirent?;

            let file_name = dirent.file_name();

            let segment_file_name = file_name.to_str().ok_or_else(|| {
                log::error!("invalid segment file name {file_name:?}");
                crate::Error::Unrecoverable
            })?;

            let segment_file_path = dirent.path();
            assert!(!segment_file_path.is_dir());

            if segment_file_name.starts_with("tmp_") {
                log::debug!("Deleting unfinished segment: {segment_file_path:?}",);
                std::fs::remove_file(&segment_file_path)?;
                continue;
            }

            log::debug!("Recovering segment from {segment_file_path:?}");

            let segment_id = segment_file_name.parse::<SegmentId>().map_err(|e| {
                log::error!("invalid segment file name {segment_file_name:?}: {e:?}");
                crate::Error::Unrecoverable
            })?;

            if let Some(&level_idx) = segment_id_map.get(&segment_id) {
                let segment = Segment::recover(
                    &segment_file_path,
                    tree_id,
                    block_cache.clone(),
                    descriptor_table.clone(),
                    level_idx == 0 || level_idx == 1,
                )?;

                descriptor_table.insert(&segment_file_path, segment.global_id());

                segments.push(segment);
                log::debug!("Recovered segment from {segment_file_path:?}");

                if idx % progress_mod == 0 {
                    log::debug!("Recovered {idx}/{cnt} disk segments");
                }
            } else {
                log::debug!("Deleting unfinished segment: {segment_file_path:?}",);
                std::fs::remove_file(&segment_file_path)?;
            }
        }

        if segments.len() < cnt {
            log::error!(
                "Recovered less segments than expected: {:?}",
                segment_id_map.keys(),
            );
            return Err(crate::Error::Unrecoverable);
        }

        log::debug!("Successfully recovered {} segments", segments.len());

        LevelManifest::recover(&level_manifest_path, segments)
    }
}