1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
use crate::value::{ParsedInternalKey, SeqNo, UserValue, ValueType};
use crate::Value;
use crossbeam_skiplist::SkipMap;
use std::sync::atomic::AtomicU32;

/// The memtable serves as an intermediary storage for new items
#[derive(Default)]
pub struct MemTable {
    pub(crate) items: SkipMap<ParsedInternalKey, UserValue>,

    /// Approximate active memtable size
    ///
    /// If this grows too large, a flush is triggered
    pub(crate) approximate_size: AtomicU32,
}

impl MemTable {
    /// Returns the item by key if it exists
    ///
    /// The item with the highest seqno will be returned, if `seqno` is None
    pub fn get<K: AsRef<[u8]>>(&self, key: K, seqno: Option<SeqNo>) -> Option<Value> {
        let prefix = key.as_ref();

        // NOTE: This range start deserves some explanation...
        // InternalKeys are multi-sorted by 2 categories: user_key and Reverse(seqno). (tombstone doesn't really matter)
        // We search for the lowest entry that is greater or equal the user's prefix key
        // and has the highest seqno (because the seqno is stored in reverse order)
        //
        // Example: We search for "asd"
        //
        // key -> seqno
        //
        // a   -> 7
        // abc -> 5 <<< This is the lowest key that matches the range
        // abc -> 4
        // abc -> 3
        // abcdef -> 6
        // abcdef -> 5
        //
        let range = ParsedInternalKey::new(prefix, SeqNo::MAX, ValueType::Tombstone)..;

        for entry in self.items.range(range) {
            let key = entry.key();

            // TODO: add benchmark to check upper bound of this query
            // We are past the searched key, so we can immediately return None
            if &*key.user_key > prefix {
                return None;
            }

            // Check for seqno if needed
            if let Some(seqno) = seqno {
                if key.seqno < seqno {
                    return Some(Value::from((entry.key().clone(), entry.value().clone())));
                }
            } else {
                return Some(Value::from((entry.key().clone(), entry.value().clone())));
            }
        }

        None
    }

    /// Get approximate size of memtable in bytes
    pub fn size(&self) -> u32 {
        self.approximate_size
            .load(std::sync::atomic::Ordering::Acquire)
    }

    /// Count the amount of items in the memtable
    pub fn len(&self) -> usize {
        self.items.len()
    }

    /// Returns `true` if the memtable is empty
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Inserts an item into the memtable
    pub fn insert(&self, item: Value) -> (u32, u32) {
        let item_size = item.size() as u32;

        let size_before = self
            .approximate_size
            .fetch_add(item_size, std::sync::atomic::Ordering::AcqRel);

        let key = ParsedInternalKey::new(item.key, item.seqno, item.value_type);
        self.items.insert(key, item.value);

        (item_size, size_before + item_size)
    }

    /// Returns the highest sequence number in the memtable
    pub fn get_lsn(&self) -> Option<SeqNo> {
        self.items
            .iter()
            .map(|x| {
                let key = x.key();
                key.seqno
            })
            .max()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::value::ValueType;
    use test_log::test;

    #[test]
    fn test_memtable_get() {
        let memtable = MemTable::default();

        let value = Value::new(b"abc".to_vec(), b"abc".to_vec(), 0, ValueType::Value);

        memtable.insert(value.clone());

        assert_eq!(Some(value), memtable.get("abc", None));
    }

    #[test]
    fn test_memtable_get_highest_seqno() {
        let memtable = MemTable::default();

        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            0,
            ValueType::Value,
        ));
        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            1,
            ValueType::Value,
        ));
        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            2,
            ValueType::Value,
        ));
        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            3,
            ValueType::Value,
        ));
        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            4,
            ValueType::Value,
        ));

        assert_eq!(
            Some(Value::new(
                b"abc".to_vec(),
                b"abc".to_vec(),
                4,
                ValueType::Value,
            )),
            memtable.get("abc", None)
        );
    }

    #[test]
    fn test_memtable_get_prefix() {
        let memtable = MemTable::default();

        memtable.insert(Value::new(
            b"abc0".to_vec(),
            b"abc".to_vec(),
            0,
            ValueType::Value,
        ));
        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            255,
            ValueType::Value,
        ));

        assert_eq!(
            Some(Value::new(
                b"abc".to_vec(),
                b"abc".to_vec(),
                255,
                ValueType::Value,
            )),
            memtable.get("abc", None)
        );

        assert_eq!(
            Some(Value::new(
                b"abc0".to_vec(),
                b"abc".to_vec(),
                0,
                ValueType::Value,
            )),
            memtable.get("abc0", None)
        );
    }

    #[test]
    fn test_memtable_get_old_version() {
        let memtable = MemTable::default();

        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            0,
            ValueType::Value,
        ));
        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            99,
            ValueType::Value,
        ));
        memtable.insert(Value::new(
            b"abc".to_vec(),
            b"abc".to_vec(),
            255,
            ValueType::Value,
        ));

        assert_eq!(
            Some(Value::new(
                b"abc".to_vec(),
                b"abc".to_vec(),
                255,
                ValueType::Value,
            )),
            memtable.get("abc", None)
        );

        assert_eq!(
            Some(Value::new(
                b"abc".to_vec(),
                b"abc".to_vec(),
                99,
                ValueType::Value,
            )),
            memtable.get("abc", Some(100))
        );

        assert_eq!(
            Some(Value::new(
                b"abc".to_vec(),
                b"abc".to_vec(),
                0,
                ValueType::Value,
            )),
            memtable.get("abc", Some(50))
        );
    }
}