1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
use crate::value::{ParsedInternalKey, SeqNo, UserValue, ValueType};
use crate::Value;
use crossbeam_skiplist::SkipMap;
use std::sync::atomic::AtomicU32;
/// The memtable serves as an intermediary storage for new items
#[derive(Default)]
pub struct MemTable {
pub(crate) items: SkipMap<ParsedInternalKey, UserValue>,
/// Approximate active memtable size
///
/// If this grows too large, a flush is triggered
pub(crate) approximate_size: AtomicU32,
}
impl MemTable {
/// Returns the item by key if it exists
///
/// The item with the highest seqno will be returned, if `seqno` is None
pub fn get<K: AsRef<[u8]>>(&self, key: K, seqno: Option<SeqNo>) -> Option<Value> {
let prefix = key.as_ref();
// NOTE: This range start deserves some explanation...
// InternalKeys are multi-sorted by 2 categories: user_key and Reverse(seqno). (tombstone doesn't really matter)
// We search for the lowest entry that is greater or equal the user's prefix key
// and has the highest seqno (because the seqno is stored in reverse order)
//
// Example: We search for "asd"
//
// key -> seqno
//
// a -> 7
// abc -> 5 <<< This is the lowest key that matches the range
// abc -> 4
// abc -> 3
// abcdef -> 6
// abcdef -> 5
//
let range = ParsedInternalKey::new(prefix, SeqNo::MAX, ValueType::Tombstone)..;
for entry in self.items.range(range) {
let key = entry.key();
// TODO: add benchmark to check upper bound of this query
// We are past the searched key, so we can immediately return None
if &*key.user_key > prefix {
return None;
}
// Check for seqno if needed
if let Some(seqno) = seqno {
if key.seqno < seqno {
return Some(Value::from((entry.key().clone(), entry.value().clone())));
}
} else {
return Some(Value::from((entry.key().clone(), entry.value().clone())));
}
}
None
}
/// Get approximate size of memtable in bytes
pub fn size(&self) -> u32 {
self.approximate_size
.load(std::sync::atomic::Ordering::Acquire)
}
/// Count the amount of items in the memtable
pub fn len(&self) -> usize {
self.items.len()
}
/// Returns `true` if the memtable is empty
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Inserts an item into the memtable
pub fn insert(&self, item: Value) -> (u32, u32) {
let item_size = item.size() as u32;
let size_before = self
.approximate_size
.fetch_add(item_size, std::sync::atomic::Ordering::AcqRel);
let key = ParsedInternalKey::new(item.key, item.seqno, item.value_type);
self.items.insert(key, item.value);
(item_size, size_before + item_size)
}
/// Returns the highest sequence number in the memtable
pub fn get_lsn(&self) -> Option<SeqNo> {
self.items
.iter()
.map(|x| {
let key = x.key();
key.seqno
})
.max()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::value::ValueType;
use test_log::test;
#[test]
fn test_memtable_get() {
let memtable = MemTable::default();
let value = Value::new(b"abc".to_vec(), b"abc".to_vec(), 0, ValueType::Value);
memtable.insert(value.clone());
assert_eq!(Some(value), memtable.get("abc", None));
}
#[test]
fn test_memtable_get_highest_seqno() {
let memtable = MemTable::default();
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
0,
ValueType::Value,
));
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
1,
ValueType::Value,
));
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
2,
ValueType::Value,
));
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
3,
ValueType::Value,
));
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
4,
ValueType::Value,
));
assert_eq!(
Some(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
4,
ValueType::Value,
)),
memtable.get("abc", None)
);
}
#[test]
fn test_memtable_get_prefix() {
let memtable = MemTable::default();
memtable.insert(Value::new(
b"abc0".to_vec(),
b"abc".to_vec(),
0,
ValueType::Value,
));
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
255,
ValueType::Value,
));
assert_eq!(
Some(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
255,
ValueType::Value,
)),
memtable.get("abc", None)
);
assert_eq!(
Some(Value::new(
b"abc0".to_vec(),
b"abc".to_vec(),
0,
ValueType::Value,
)),
memtable.get("abc0", None)
);
}
#[test]
fn test_memtable_get_old_version() {
let memtable = MemTable::default();
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
0,
ValueType::Value,
));
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
99,
ValueType::Value,
));
memtable.insert(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
255,
ValueType::Value,
));
assert_eq!(
Some(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
255,
ValueType::Value,
)),
memtable.get("abc", None)
);
assert_eq!(
Some(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
99,
ValueType::Value,
)),
memtable.get("abc", Some(100))
);
assert_eq!(
Some(Value::new(
b"abc".to_vec(),
b"abc".to_vec(),
0,
ValueType::Value,
)),
memtable.get("abc", Some(50))
);
}
}